运输工程
行人
比例(比率)
计算机科学
建筑环境
地理
地图学
工程类
土木工程
作者
Sheng Hu,Hanfa Xing,Wei Luo,Liang Wu,Yongyang Xu,Weiming Huang,Wenkai Liu,Tianqi Li
出处
期刊:International journal of geographical information systems
[Informa]
日期:2023-09-15
卷期号:37 (11): 2367-2391
被引量:32
标识
DOI:10.1080/13658816.2023.2254362
摘要
Investigating the relationship between built environment factors and roadway safety is crucial for preventing road traffic accidents. Although studies have analyzed traffic-related built environment factors based on pre-determined zonal units, conclusive evidence regarding the relationship between streetscape features and traffic accidents at a fine-grained road segment level is still lacking. With the widespread availability of large-scale street view images, automatically analyzing urban built environments on a large scale is possible. Therefore, the aim of this study was to investigate the relationship between streetscape features and traffic accidents at a fine-grained road segment level using street view images. Specifically, we employed semantic image segmentation to extract streetscape elements from urban street view images, and then created traffic crash-related variables, including the street-level built environment variables, traffic variables, land-use indices, and proximity characteristics, at the road-segment level. Finally, we adopted a classification-then-regression strategy to model the number of traffic crashes while considering the zero-inflated and spatial heterogeneity issues. Our findings suggest that streetscape features can effectively reflect built-environment characteristics at the road-segment level. Moreover, a comparison of our proposed modeling method with existing models demonstrates its superior performance. The results provide insight into the development of effective planning strategies to improve traffic safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI