化学
穆斯堡尔谱学
电子转移
反应性(心理学)
价(化学)
无机化学
四氯化碳
八面体
相(物质)
核化学
结晶学
晶体结构
物理化学
有机化学
病理
替代医学
医学
作者
Qianqian Jia,Xuejie Zhang,Jia Deng,Li‐Zhi Huang
出处
期刊:Water Research
[Elsevier]
日期:2023-10-01
卷期号:245: 120636-120636
被引量:4
标识
DOI:10.1016/j.watres.2023.120636
摘要
Labile Fe(III) phase (includes Fe(III)aq, Fe(III)ads, or Fe(III)s species) is an important intermediate during the interaction between Fe(II) and Fe(III) (oxyhydr)oxides, but how does labile Fe(III) influence the electron transfer from Fe(II) to oxidant environmental pollutant during this Fe(II)-Fe(III) interaction is unclear. In this work, the dynamic change of Fe(II,III) (oxyhydr)oxides at the same time scale is simulated by synthesizing Fe(III)-Fe(II)-I (Fe(III)+NaOH+Fe(II)+NaOH) with different Fe(II)/Fe(III) ratios. CCl4 is used as a convenient probe to test the reduction kinetics of mixed valence Fe(II,III)(oxyhydr)oxides with different Fe(II):Fe(III) ratios. The Mössbauer spectra results reveal the Fe(III)labile in the solid phase is in octahedral coordination. The electron-donating capability of Fe(II) was improved with increasing Fe(III) content, but suppressed when [Fe(III)] ≥ 30 mM. The reductive dechlorination of CT by Fe(III)-Fe(II)-I decreased gradually with the increase of Fe(III) content, because more amount Fe(III)labile in solid phase is accumulated. This shows that the electron transfer from Fe(II) to Fe(III)labile rather than to CT is enhanced with increasing Fe(III) content. FTIR data shows that the hydroxylation of Fe(II) with Fe(OH)3 occurs preferentially in the non-hydrogen bonded hydroxyl group, causing the decrease of its reductive reactivity. The presence of [Fe(III)-O-Fe(II)]+ in Fe(III)-Fe(II)-I can stabilize the dichlorocarbene anion (:CCl2-), favouring the conversion of CT to CH4 (13.1%). The aging experiment shows that Fe(III)labile surface may maintain the reductive reactivity of Fe(II) during aging when [Fe(III)] = 5-20 mM. This study deepens our understanding of the mass transfer pathway of iron oxyhydroxides induced by Fe(II) and its impact on the reductive dechlorination of CT.
科研通智能强力驱动
Strongly Powered by AbleSci AI