A general maximal margin hyper-sphere SVM for multi-class classification

支持向量机 边界判定 计算机科学 超平面 人工智能 机器学习 二元分类 边距(机器学习) 分类器(UML) 班级(哲学) 模式识别(心理学) 数学 几何学
作者
Ting Ke,Xuechun Ge,Feifei Yin,Lidong Zhang,Yaozong Zheng,Chuanlei Zhang,Jianrong Li,Bo Wang,Wei Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121647-121647 被引量:14
标识
DOI:10.1016/j.eswa.2023.121647
摘要

Traditional SVM algorithms for multi-class (k > 2 classes) classification tasks include "one-against-one", "one-against-rest", and "one-against-one-against-rest", which build k(k−1)/2 or k classifiers for space partitioning and classification decision. However, they may cause a variety of problems, such as an imbalanced problem, a high temporal complexity, and trouble establishing the decision boundary. In this study, we use the notion of minimizing structural risks (SRM) to recognize k classes by designing only one optimization problem, which we call M3HS-SVM. The M3HS-SVM offers numerous benefits. In summary, the following points should be emphasized: (1) Rather than dividing the space with hyper-planes, M3HS-SVM describes the structural characteristics of various classes of data and trains the hyper-sphere classifier of each class based on the data distribution. (2) M3HS-SVM inherits all of the advantages of classical binary SVM, such as the maximization spirit, the use of kernel techniques to solve nonlinear separable problems, and excellent generalization ability. (3) In the dual problem, we develop an SMO algorithm to effectively reduce the complexity of time and space. We eventually validate the preceding statement with comprehensive experiments. The experiment findings show that our method outperforms other mainstream methods in terms of computing time and classification performance on synthetic datasets, UCI datasets, and NDC datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助歪梨小菲采纳,获得10
刚刚
Akim应助科研你疼疼我采纳,获得10
刚刚
量子星尘发布了新的文献求助50
1秒前
1秒前
1秒前
ldd完成签到,获得积分10
1秒前
2秒前
大学士发布了新的文献求助10
2秒前
梦梦完成签到 ,获得积分10
2秒前
Re_完成签到,获得积分10
2秒前
ysy发布了新的文献求助30
3秒前
紧张的清发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
深情安青应助水流众生采纳,获得10
5秒前
酪酪Alona发布了新的文献求助10
5秒前
buzxdz发布了新的文献求助10
6秒前
6秒前
嗯嗯发布了新的文献求助10
7秒前
7秒前
天天快乐应助陈咬金采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
kayla发布了新的文献求助10
9秒前
myn1990完成签到,获得积分20
9秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
上官若男应助xuejie采纳,获得10
10秒前
10秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
乔峰完成签到,获得积分10
11秒前
123应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933582
求助须知:如何正确求助?哪些是违规求助? 4201685
关于积分的说明 13054603
捐赠科研通 3975759
什么是DOI,文献DOI怎么找? 2178584
邀请新用户注册赠送积分活动 1194854
关于科研通互助平台的介绍 1106269