As artificial intelligence goes multimodal, medical applications multiply

人工智能 计算机科学 口译(哲学) 深度学习 医学影像学 医学 机器学习 医学物理学 程序设计语言
作者
Eric J. Topol
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:381 (6663) 被引量:35
标识
DOI:10.1126/science.adk6139
摘要

Machines don't have eyes, but you wouldn't know that if you followed the progression of deep learning models for accurate interpretation of medical images, such as x-rays, computed tomography (CT) and magnetic resonance imaging (MRI) scans, pathology slides, and retinal photos. Over the past several years, there has been a torrent of studies that have consistently demonstrated how powerful "machine eyes" can be, not only compared with medical experts but also for detecting features in medical images that are not readily discernable by humans. For example, a retinal scan is rich with information that people can't see, but machines can, providing a gateway to multiple aspects of human physiology, including blood pressure; glucose control; risk of Parkinson's, Alzheimer's, kidney, and hepatobiliary diseases; and the likelihood of heart attacks and strokes. As a cardiologist, I would not have envisioned that machine interpretation of an electrocardiogram would provide information about the individual's age, sex, anemia, risk of developing diabetes or arrhythmias, heart function and valve disease, kidney, or thyroid conditions. Likewise, applying deep learning to a pathology slide of tumor tissue can also provide insight about the site of origin, driver mutations, structural genomic variants, and prognosis. Although these machine vision capabilities for medical image interpretation may seem impressive, they foreshadow what is potentially far more expansive terrain for artificial intelligence (AI) to transform medicine. The big shift ahead is the ability to transcend narrow, unimodal tasks, confined to images, and broaden machine capabilities to include text and speech, encompassing all input modes, setting the foundation for multimodal AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助11采纳,获得10
1秒前
1秒前
2秒前
Asura完成签到,获得积分10
2秒前
CodeCraft应助爹爹采纳,获得10
2秒前
wei完成签到,获得积分10
3秒前
鲜于之玉发布了新的文献求助10
3秒前
清脆大米发布了新的文献求助10
5秒前
Hello应助无心的笑蓝采纳,获得10
5秒前
5秒前
认真冷玉发布了新的文献求助10
6秒前
乐乐应助leslie采纳,获得10
8秒前
鱿鱼阿章完成签到,获得积分10
11秒前
Alias1234发布了新的文献求助10
12秒前
Cameron发布了新的文献求助50
12秒前
彭于晏应助zhangxr采纳,获得10
12秒前
一二三完成签到,获得积分10
12秒前
CodeCraft应助沉默起眸采纳,获得10
13秒前
14秒前
14秒前
14秒前
cytochrome应助小雨治大水采纳,获得20
15秒前
李爱国应助健忘天问采纳,获得10
16秒前
二平发布了新的文献求助10
17秒前
称心乐枫完成签到,获得积分10
18秒前
19秒前
wanci应助慈祥的百招采纳,获得30
20秒前
英勇明雪发布了新的文献求助10
20秒前
21秒前
斯文败类应助开朗洋葱采纳,获得10
21秒前
香蕉奎发布了新的文献求助30
23秒前
枘棋完成签到 ,获得积分10
24秒前
25秒前
26秒前
关中人完成签到,获得积分10
26秒前
迅速冥茗发布了新的文献求助10
28秒前
香蕉奎应助笨笨从凝采纳,获得10
30秒前
31秒前
32秒前
烟花应助西门吹雪9527采纳,获得10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503