钌
分解水
过电位
氧化物
析氧
电解
催化作用
材料科学
电化学
制氢
化学物理
化学工程
无机化学
化学
物理化学
光催化
冶金
电极
工程类
电解质
生物化学
作者
Chun Hu,Kaihang Yue,Jiajia Han,Xiaozhi Liu,Lijia Liu,Qiunan Liu,Qingyu Kong,Chih‐Wen Pao,Zhiwei Hu,Kazu Suenaga,Dong Su,Qiaobao Zhang,Xianying Wang,Yuan‐Zhi Tan,Xiaoqing Huang
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-09-15
卷期号:9 (37)
被引量:47
标识
DOI:10.1126/sciadv.adf9144
摘要
Designing an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO 2 ) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M H 2 SO 4 . Microstructural analyses, density functional calculations, and isotope-labeled differential electrochemical mass spectroscopy measurements collectively reveal that the integration of foreign metal elements and GB is responsible for the enhancement of activity and stability of RuO 2 toward OER. A PEMWE using M-RuIrFeCoNiO 2 catalyst can steadily operate at a large current density of 1 ampere per square centimeter for over 500 hours. This work demonstrates a pathway to design high-performance OER electrocatalysts by integrating the advantages of various components and GB, which breaks the limits of thermodynamic solubility for different metal elements.
科研通智能强力驱动
Strongly Powered by AbleSci AI