Light-YOLOv5: A Lightweight Drone Detector for Resource-Constrained Cameras

无人机 计算机科学 探测器 人工智能 计算机视觉 实时计算 物联网 嵌入式系统 电信 遗传学 生物
作者
Jin Han,Ran Cao,Alessandro Brighente,Mauro Conti
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 11046-11057 被引量:4
标识
DOI:10.1109/jiot.2023.3329221
摘要

Critical infrastructures (CIs), such as military bases and airports, are putting a lot of attention into defending against attacks delivered via drones by deploying drone detection systems. However, the CI area might be very large, with no-fly zones extending to regions where it might not be possible to deploy a power line for resourceful cameras. To this aim, the CI might deploy an Internet of Things (IoT)-based surveillance camera system to capture drone images. However, these IoT cameras are resource-constrained devices that cannot support the currently available detectors. In this article, we propose Light-YOLOv5, a lightweight image-based drone detector for resource-constrained cameras. We make targeted improvements to YOLOv5, including the replacement of the backbone network, the introduction of the transformer module, and the design of a parallel mixed efficient attention module (PEAM). We show that our modifications allow for reduced network size while achieving better classification than other state-of-the-art solutions. To prove these claims, we expanded an already available data set of blurred drone images by adding clear images of aircraft and birds. Since airplanes and birds are easily confused as drones by image classifiers, our addition proves the effectiveness of our solution. Experiments show that Light-YOLOv5 can achieve a very good tradeoff between performance (74.8% mAP) and efficiency (170 FPS). Compared to YOLOv5, Light-YOLOv5 improves mAP by 4.1%, reduces the number of network parameters by 15.7%, can perform detection at 170 frames per second (FPS), and achieves an average accuracy rate of 93.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助追寻的身影采纳,获得20
1秒前
欢呼的寻双完成签到,获得积分10
2秒前
鸿宇发布了新的文献求助30
2秒前
2秒前
中午吃烧卖完成签到,获得积分10
3秒前
英俊的铭应助魏小梅采纳,获得10
3秒前
小沈小沈完成签到,获得积分10
3秒前
sincere008完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助日月星陈采纳,获得10
4秒前
康康发布了新的文献求助20
4秒前
yinanan完成签到 ,获得积分10
5秒前
5秒前
小马甲应助飞快的珩采纳,获得10
5秒前
5秒前
Owen应助三三采纳,获得30
6秒前
7秒前
xj发布了新的文献求助10
8秒前
111完成签到 ,获得积分10
8秒前
lllll发布了新的文献求助10
10秒前
Lan发布了新的文献求助10
10秒前
11秒前
AlexLam发布了新的文献求助10
12秒前
12秒前
共享精神应助mjj采纳,获得10
13秒前
13秒前
传奇3应助ppg123采纳,获得10
13秒前
14秒前
17秒前
AlexLam完成签到,获得积分10
18秒前
DE发布了新的文献求助10
18秒前
思源应助伶俐的高烽采纳,获得10
18秒前
牛马人生发布了新的文献求助10
18秒前
NexusExplorer应助天天采纳,获得10
19秒前
科研通AI2S应助不准吃烤肉采纳,获得10
19秒前
yinsw发布了新的文献求助200
19秒前
lbc完成签到,获得积分10
19秒前
NexusExplorer应助小沈采纳,获得10
19秒前
20秒前
科研通AI2S应助21采纳,获得10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312373
求助须知:如何正确求助?哪些是违规求助? 2945014
关于积分的说明 8522631
捐赠科研通 2620796
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187