Defective Nickle–Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant Alleviation of NO2 Production

氢氧化物 光催化 层状双氢氧化物 化学 催化作用 吸附 氧气 光化学 氮氧化物 无机化学 有机化学 燃烧
作者
Xiaoyu Li,Xiaoshu Lv,Jian Pan,Peng Chen,Huihui Peng,Yan Jiang,Haifeng Gong,Guangming Jiang,Li’an Hou
出处
期刊:Engineering [Elsevier]
卷期号:36: 276-284
标识
DOI:10.1016/j.eng.2023.06.017
摘要

Photocatalysis offers a sustainable avenue for the oxidative removal of low concentrations of NOx from the atmosphere. Layered double hydroxides (LDHs) are promising candidate photocatalysts owing to their unique layered and tunable chemical structures, and the abundant hydroxide (OH−) moieties on their surfaces that are hydroxyl radical (•OH) precursors. However, inferior charge separation and limited active sites on an LDH hinder its practical applications. Herein, we developed a facile N2H4-driven etching (et) approach that introduces dual Ni2+ and OH− vacancies (Niv and OHv) into NiFe-LDH nanosheets (referred to as NiFe-LDH-et) that facilitate improved charge-carrier separation and the formation of active Lewis acidic sites (Fe3+ and Ni2+ exposed at OHv). In contrast to inert pristine LDH, NiFe-LDH-et actively removes NO when illuminated with visible light. Specifically, Ni76Fe24-LDH-et etched in 1.50 mmol·L−1 N2H4 solution removes 32.8% of the NO from continuously flowing air (NO-feed concentration: ∼500 parts per billion (ppb)) when illuminated with visible light, thereby outperforming most reported catalysts. Experimental and theoretical data reveal that the dual vacancies promote the production of reactive oxygen species (•O2− and •OH) and the adsorption of NO on the LDH. In-situ spectroscopy revealed that NO is preferentially adsorbed at Lewis acidic sites, particularly exposed Fe3+ sites, and then converted into NO+ that is subsequently oxidized to NO3− without the formation of any of the more toxic NO2 intermediate, thereby alleviating risks associated with its production and emission.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助西瓜皮先生采纳,获得10
2秒前
烟花应助Suysheng采纳,获得10
4秒前
Hello应助kiltorh采纳,获得10
5秒前
5秒前
5秒前
laohu完成签到,获得积分10
5秒前
渊崖曙春应助Keyl采纳,获得10
8秒前
9秒前
9秒前
小新完成签到,获得积分10
10秒前
samuel发布了新的文献求助10
10秒前
fxzx发布了新的文献求助30
12秒前
天天快乐应助喔喔采纳,获得10
12秒前
12秒前
可爱的函函应助超级冷雪采纳,获得10
12秒前
sunshine发布了新的文献求助10
13秒前
17秒前
万能图书馆应助秋不落棠采纳,获得10
18秒前
19秒前
fxzx完成签到,获得积分10
19秒前
Maomao完成签到,获得积分10
20秒前
samuel完成签到,获得积分10
21秒前
22秒前
25秒前
耀灵发布了新的文献求助10
26秒前
27秒前
29秒前
今后应助普外科老白采纳,获得10
31秒前
秋不落棠发布了新的文献求助10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
pluto应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
NexusExplorer应助WangXiaoze采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
31秒前
坡坡大王应助科研通管家采纳,获得10
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482364
求助须知:如何正确求助?哪些是违规求助? 3072071
关于积分的说明 9125641
捐赠科研通 2763858
什么是DOI,文献DOI怎么找? 1516713
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700592