AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory

工厂 农业工程 持续性 能源消耗 生产(经济) 可持续农业 杠杆(统计) 资源效率 环境经济学 工程类 计算机科学 生态学 人工智能 电气工程 宏观经济学 农学 经济 生物
作者
Guoqing Hu,Fengqi You
出处
期刊:Applied Energy [Elsevier BV]
卷期号:356: 122334-122334 被引量:13
标识
DOI:10.1016/j.apenergy.2023.122334
摘要

The advancement of controlled-environment agriculture, particularly in plant factories, offers an innovative solution to address the rising demand for food due to global population growth and urbanization. These controlled environments provide consistent and predictable crop yields, irrespective of external weather conditions, and can be tailored to achieve optimal plant growth. However, the intensive energy requirements of these systems have raised sustainability concerns. In plant factories, which provide regulated environments for sustainable food production, it remains essential to minimize energy consumption while maintaining operational efficiency. This study introduces a novel cyber-physical-biological system (CPBS) for managing energy and crop production in plant factories. The CPBS accurately captures plant biological dynamics, such as temperature, humidity, lighting, and CO2 levels, optimizes control variables, and predicts crop growth within these controlled environments. To achieve these outcomes, we leverage physics-informed deep learning (PIDL) techniques to develop high-fidelity and computationally efficient digital twins for the plant factory's internal microclimate and crop states. PIDL enables us to capture complex relationships between environmental factors and crop growth, thereby improving accuracy and decision-making in control. Using the CPBS, we optimize energy usage and resource expenses to ensure sustainable crop production rates under different daylight scenarios in the plant factory. Simulation results from a full growth cycle demonstrate that our proposed CPBS, compared to a certainty equivalent model predictive control (MPC), reduces violation cases by 84.53%. Additionally, it achieves a reduction of 13.41% and 13.04% in energy and resource usage, respectively, compared to a traditional robust MPC that considers a box-shaped uncertainty set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助jiashan采纳,获得10
刚刚
元宝完成签到,获得积分10
刚刚
orixero应助草莓布丁采纳,获得30
1秒前
欢呼的方盒完成签到,获得积分10
3秒前
王不王发布了新的文献求助10
3秒前
常涑完成签到,获得积分10
3秒前
苏苏发布了新的文献求助10
4秒前
4秒前
勤奋的天亦完成签到,获得积分10
5秒前
123654完成签到 ,获得积分10
5秒前
fs完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
gnr2000发布了新的文献求助10
8秒前
evens发布了新的文献求助10
8秒前
米九完成签到,获得积分10
9秒前
紧张的铅笔完成签到,获得积分10
9秒前
老刘完成签到,获得积分10
9秒前
岚婘完成签到,获得积分10
9秒前
frap完成签到,获得积分0
11秒前
Rui完成签到 ,获得积分10
12秒前
852应助球球了采纳,获得10
13秒前
优雅小霜发布了新的文献求助10
13秒前
星沉静默完成签到 ,获得积分10
13秒前
搜集达人应助yxy采纳,获得10
14秒前
流川枫发布了新的文献求助10
15秒前
russing完成签到 ,获得积分10
15秒前
张础锐完成签到,获得积分10
16秒前
沉静海安完成签到,获得积分10
16秒前
苗条的小蜜蜂完成签到 ,获得积分10
17秒前
万能图书馆应助westbobo采纳,获得10
17秒前
li完成签到,获得积分20
18秒前
lin完成签到,获得积分10
19秒前
Lucas应助XJ采纳,获得10
19秒前
今天不学习明天变垃圾完成签到,获得积分10
19秒前
心灵美的修洁完成签到 ,获得积分10
19秒前
爱听歌的从筠完成签到,获得积分10
20秒前
22秒前
1997_Aris发布了新的文献求助10
22秒前
cc完成签到,获得积分10
23秒前
li发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582