AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory

工厂 农业工程 持续性 能源消耗 生产(经济) 可持续农业 杠杆(统计) 资源效率 环境经济学 工程类 计算机科学 生态学 人工智能 农学 宏观经济学 经济 电气工程 生物
作者
Guoqing Hu,Fengqi You
出处
期刊:Applied Energy [Elsevier]
卷期号:356: 122334-122334 被引量:13
标识
DOI:10.1016/j.apenergy.2023.122334
摘要

The advancement of controlled-environment agriculture, particularly in plant factories, offers an innovative solution to address the rising demand for food due to global population growth and urbanization. These controlled environments provide consistent and predictable crop yields, irrespective of external weather conditions, and can be tailored to achieve optimal plant growth. However, the intensive energy requirements of these systems have raised sustainability concerns. In plant factories, which provide regulated environments for sustainable food production, it remains essential to minimize energy consumption while maintaining operational efficiency. This study introduces a novel cyber-physical-biological system (CPBS) for managing energy and crop production in plant factories. The CPBS accurately captures plant biological dynamics, such as temperature, humidity, lighting, and CO2 levels, optimizes control variables, and predicts crop growth within these controlled environments. To achieve these outcomes, we leverage physics-informed deep learning (PIDL) techniques to develop high-fidelity and computationally efficient digital twins for the plant factory's internal microclimate and crop states. PIDL enables us to capture complex relationships between environmental factors and crop growth, thereby improving accuracy and decision-making in control. Using the CPBS, we optimize energy usage and resource expenses to ensure sustainable crop production rates under different daylight scenarios in the plant factory. Simulation results from a full growth cycle demonstrate that our proposed CPBS, compared to a certainty equivalent model predictive control (MPC), reduces violation cases by 84.53%. Additionally, it achieves a reduction of 13.41% and 13.04% in energy and resource usage, respectively, compared to a traditional robust MPC that considers a box-shaped uncertainty set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CadoreK完成签到 ,获得积分10
刚刚
landy完成签到 ,获得积分10
1秒前
舒心幻竹完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
FashionBoy应助pamela采纳,获得10
3秒前
4秒前
522完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
脉动完成签到,获得积分10
6秒前
6秒前
fantastic完成签到,获得积分10
7秒前
Jero完成签到 ,获得积分10
7秒前
rrrr发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
小小应助科研通管家采纳,获得10
9秒前
小小应助科研通管家采纳,获得20
9秒前
小小应助科研通管家采纳,获得10
9秒前
小小应助科研通管家采纳,获得10
9秒前
小小应助科研通管家采纳,获得30
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812