亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory

工厂 农业工程 持续性 能源消耗 生产(经济) 可持续农业 杠杆(统计) 资源效率 环境经济学 工程类 计算机科学 生态学 人工智能 农学 宏观经济学 经济 电气工程 生物
作者
Guoqing Hu,Fengqi You
出处
期刊:Applied Energy [Elsevier]
卷期号:356: 122334-122334 被引量:13
标识
DOI:10.1016/j.apenergy.2023.122334
摘要

The advancement of controlled-environment agriculture, particularly in plant factories, offers an innovative solution to address the rising demand for food due to global population growth and urbanization. These controlled environments provide consistent and predictable crop yields, irrespective of external weather conditions, and can be tailored to achieve optimal plant growth. However, the intensive energy requirements of these systems have raised sustainability concerns. In plant factories, which provide regulated environments for sustainable food production, it remains essential to minimize energy consumption while maintaining operational efficiency. This study introduces a novel cyber-physical-biological system (CPBS) for managing energy and crop production in plant factories. The CPBS accurately captures plant biological dynamics, such as temperature, humidity, lighting, and CO2 levels, optimizes control variables, and predicts crop growth within these controlled environments. To achieve these outcomes, we leverage physics-informed deep learning (PIDL) techniques to develop high-fidelity and computationally efficient digital twins for the plant factory's internal microclimate and crop states. PIDL enables us to capture complex relationships between environmental factors and crop growth, thereby improving accuracy and decision-making in control. Using the CPBS, we optimize energy usage and resource expenses to ensure sustainable crop production rates under different daylight scenarios in the plant factory. Simulation results from a full growth cycle demonstrate that our proposed CPBS, compared to a certainty equivalent model predictive control (MPC), reduces violation cases by 84.53%. Additionally, it achieves a reduction of 13.41% and 13.04% in energy and resource usage, respectively, compared to a traditional robust MPC that considers a box-shaped uncertainty set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助wang14采纳,获得10
3秒前
叶言完成签到,获得积分10
4秒前
7秒前
古今奇观完成签到 ,获得积分10
13秒前
13秒前
机智的寒荷完成签到 ,获得积分10
13秒前
美满惜寒发布了新的文献求助10
14秒前
chenzheng发布了新的文献求助10
23秒前
30秒前
马宁婧完成签到 ,获得积分10
31秒前
难过的踏歌完成签到,获得积分10
39秒前
鲸鱼完成签到,获得积分10
41秒前
自由飞阳完成签到,获得积分10
42秒前
54秒前
NtoLse完成签到,获得积分10
56秒前
NtoLse发布了新的文献求助10
59秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
oue完成签到,获得积分20
1分钟前
bkagyin应助oue采纳,获得10
1分钟前
深情安青应助Fishchips采纳,获得10
1分钟前
123study0完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
eclo完成签到 ,获得积分10
2分钟前
平常安雁完成签到 ,获得积分10
2分钟前
小雯完成签到 ,获得积分10
2分钟前
Polaris完成签到,获得积分20
2分钟前
莫春莹完成签到 ,获得积分10
2分钟前
Ancy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Hhhhh完成签到 ,获得积分10
2分钟前
Ancy完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ding应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578