AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory

工厂 农业工程 持续性 能源消耗 生产(经济) 可持续农业 杠杆(统计) 资源效率 环境经济学 工程类 计算机科学 生态学 人工智能 电气工程 宏观经济学 农学 经济 生物
作者
Guoqing Hu,Fengqi You
出处
期刊:Applied Energy [Elsevier BV]
卷期号:356: 122334-122334 被引量:5
标识
DOI:10.1016/j.apenergy.2023.122334
摘要

The advancement of controlled-environment agriculture, particularly in plant factories, offers an innovative solution to address the rising demand for food due to global population growth and urbanization. These controlled environments provide consistent and predictable crop yields, irrespective of external weather conditions, and can be tailored to achieve optimal plant growth. However, the intensive energy requirements of these systems have raised sustainability concerns. In plant factories, which provide regulated environments for sustainable food production, it remains essential to minimize energy consumption while maintaining operational efficiency. This study introduces a novel cyber-physical-biological system (CPBS) for managing energy and crop production in plant factories. The CPBS accurately captures plant biological dynamics, such as temperature, humidity, lighting, and CO2 levels, optimizes control variables, and predicts crop growth within these controlled environments. To achieve these outcomes, we leverage physics-informed deep learning (PIDL) techniques to develop high-fidelity and computationally efficient digital twins for the plant factory's internal microclimate and crop states. PIDL enables us to capture complex relationships between environmental factors and crop growth, thereby improving accuracy and decision-making in control. Using the CPBS, we optimize energy usage and resource expenses to ensure sustainable crop production rates under different daylight scenarios in the plant factory. Simulation results from a full growth cycle demonstrate that our proposed CPBS, compared to a certainty equivalent model predictive control (MPC), reduces violation cases by 84.53%. Additionally, it achieves a reduction of 13.41% and 13.04% in energy and resource usage, respectively, compared to a traditional robust MPC that considers a box-shaped uncertainty set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
和谐亦瑶完成签到,获得积分10
刚刚
李健的小迷弟应助xx采纳,获得10
1秒前
CodeCraft应助旷野采纳,获得10
3秒前
鹏程发布了新的文献求助10
5秒前
完美羽毛完成签到,获得积分20
5秒前
an12138发布了新的文献求助10
5秒前
糊涂的网络完成签到,获得积分10
5秒前
大模型应助纸鹤采纳,获得10
5秒前
6秒前
8秒前
8秒前
Alan完成签到 ,获得积分10
10秒前
10秒前
666完成签到,获得积分10
13秒前
sweetbearm应助入门的橙橙采纳,获得10
14秒前
一行完成签到,获得积分10
15秒前
李爱国应助糊涂的网络采纳,获得10
16秒前
武雨寒完成签到 ,获得积分10
16秒前
小蘑菇应助华子黄采纳,获得10
18秒前
彪壮的双双完成签到,获得积分20
18秒前
19秒前
科研通AI5应助MuMay采纳,获得10
20秒前
22秒前
幸福遥完成签到,获得积分10
22秒前
yxl发布了新的文献求助10
22秒前
劲秉应助123采纳,获得10
23秒前
24秒前
立恒儿完成签到,获得积分10
25秒前
科研通AI5应助xushanqi采纳,获得10
25秒前
25秒前
25秒前
25秒前
梁liang完成签到 ,获得积分10
26秒前
26秒前
28秒前
罗逸发布了新的文献求助10
28秒前
WN发布了新的文献求助10
29秒前
yxl完成签到,获得积分20
29秒前
杪123完成签到,获得积分10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738757
求助须知:如何正确求助?哪些是违规求助? 3282088
关于积分的说明 10027733
捐赠科研通 2998878
什么是DOI,文献DOI怎么找? 1645644
邀请新用户注册赠送积分活动 782834
科研通“疑难数据库(出版商)”最低求助积分说明 750029