Robust Tensor Low-Rank Sparse Representation With Saliency Prior for Hyperspectral Anomaly Detection

高光谱成像 张量(固有定义) 模式识别(心理学) 稳健主成分分析 主成分分析 人工智能 奇异值分解 异常检测 计算机科学 秩(图论) 离群值 数学 组合数学 纯数学
作者
Qingjiang Xiao,Liaoying Zhao,Shuhan Chen,Xiaorun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20
标识
DOI:10.1109/tgrs.2023.3329510
摘要

Recently, hyperspectral anomaly detection (HAD) methods based on tensor low-rank representation (TLRR) have received widespread attention. However, most of them tend to emphasize the utilization of multiple types of prior knowledge to characterize background components, while the prior information about anomaly components is limited. Additionally, the constructed background dictionary is also susceptible to noise and outliers. To address these challenges, this paper focuses on both the background and abnormal components, proposing a robust tensor low-rank sparse representation with saliency prior (RTLSR-SP) method for HAD. Specifically, for the background component described by the dictionary tensor and the corresponding coefficient tensor, tensor nuclear norm (TNN) constraint and sparsity constraint are imposed on the coefficient tensor simultaneously to capture the global and local spatial-spectral structure information of the hyperspectral image (HSI), respectively. For the anomalous component, we design a sparse saliency prior weight tensor to enhance the saliency of anomalous targets. Meanwhile, the tensor ℓ F,1 -norm is also integrated into the model to better separate abnormal targets from the background. Furthermore, combining tensor robust principal component analysis (TRPCA) and skinny tensor singular value decomposition (skinny t-SVD), a robust background dictionary is constructed. Finally, an efficient iterative algorithm based on the alternating direction method of multipliers (ADMM) is derived to optimize the RTLSR-SP model. Comprehensive experimental findings on one simulated dataset and six real hyperspectral datasets demonstrate the effectiveness and superiority of the proposed algorithm compared with eight state-of-the-art HAD algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zj3tears发布了新的文献求助10
刚刚
必中发布了新的文献求助10
1秒前
1秒前
2秒前
干净问筠完成签到,获得积分10
2秒前
zhangyu应助小树苗采纳,获得10
2秒前
华仔应助JFP采纳,获得10
2秒前
6秒前
ChrisKim完成签到,获得积分10
6秒前
7秒前
LMZ发布了新的文献求助10
7秒前
HIT_WXY完成签到,获得积分10
7秒前
8秒前
8秒前
宇宙最萌小猫咪完成签到 ,获得积分10
9秒前
乐乐应助大方小白采纳,获得10
9秒前
Ava应助felixsun采纳,获得10
10秒前
共情完成签到,获得积分20
10秒前
Jasper应助豆豆采纳,获得10
10秒前
上官若男应助小野狼采纳,获得10
10秒前
Archy发布了新的文献求助10
11秒前
12秒前
13秒前
万能图书馆应助mty采纳,获得10
14秒前
犹豫白风发布了新的文献求助10
14秒前
14秒前
野子发布了新的文献求助10
15秒前
wyp发布了新的文献求助10
16秒前
共情发布了新的文献求助10
16秒前
16秒前
16秒前
饱满南松发布了新的文献求助10
17秒前
lulyt发布了新的文献求助10
17秒前
FashionBoy应助感动水杯采纳,获得10
17秒前
18秒前
俊逸的复天完成签到,获得积分10
19秒前
20秒前
bkagyin应助eternity136采纳,获得10
20秒前
20秒前
二橦完成签到 ,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619