A Novel Enhancement Approach Following MVMD and NMF Separation of Complex Snoring Signals

非负矩阵分解 盲信号分离 独立成分分析 源分离 主成分分析 矩阵分解 信号(编程语言) 计算机科学 模式识别(心理学) 语音识别 呼吸 相关性 信号处理 分离(统计) 相关系数 数学 算法 人工智能 频道(广播) 统计 医学 计算机网络 电信 特征向量 物理 几何学 雷达 量子力学 程序设计语言 解剖
作者
Mariam Al Mawla,Kabalan Chaccour,Hoda Fares
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 494-503 被引量:5
标识
DOI:10.1109/tbme.2023.3308296
摘要

Snoring is a prominent characteristic of sleep-disordered breathing, and its detection is critical for determining the severity of the upper airway obstruction and improving daily quality of life. Home snoring analysis is a highly invasive method, but it becomes challenging when a sleeping partner also snores, leading to distorted evaluations in such environments. In this article, we tackle the problem of complex snore signal separation of multiple snorers. This article introduces two audio-based methods that efficiently extract an individual's snoring signal, allowing for the analysis of sleep-breathing disorders in a normal sleeping environment without isolating individuals. In the first method, Principal Component Analysis (PCA) identifies the source components from the finite number of modes generated by the decomposition of the snoring mixture using Multivariate Variational Mode Decomposition (MVMD). The second method applies Blind Source Separation (BSS) based on Non-Negative Matrix Factorization (NMF) to separate the single-channel snoring mixture. Furthermore, the decomposed signals are tuned using the iterative enhancement algorithm to adequately match the source snoring signals. These methods were evaluated by simulating various real-time snoring recordings of 7 subjects (2 men, 2 women, and 3 children). The correlation coefficient between the source and its separated signal was computed to assess the separation results, exhibiting good performance of the methods used. The enhancement approach also demonstrated its efficiency by increasing the correlation over to 80% in both methods. The experimental results show that the proposed algorithms are effective and practical for separating mixed snoring signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuanyshe完成签到 ,获得积分10
刚刚
1秒前
1秒前
llll完成签到,获得积分10
4秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
毛豆应助科研通管家采纳,获得10
5秒前
Liu发布了新的文献求助10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
Qianbaor68应助科研通管家采纳,获得30
6秒前
毛豆应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
dd关闭了dd文献求助
6秒前
skywalker发布了新的文献求助10
6秒前
天人合一完成签到,获得积分10
7秒前
科研通AI5应助无恙采纳,获得10
10秒前
hao123发布了新的文献求助10
10秒前
13秒前
马李啸完成签到,获得积分10
14秒前
山城小辣椒应助meng采纳,获得50
16秒前
16秒前
摘星小僧发布了新的文献求助10
19秒前
21秒前
21秒前
科研通AI5应助cxr采纳,获得30
23秒前
劲秉应助沉默的婴采纳,获得20
24秒前
25秒前
llll发布了新的文献求助10
25秒前
得钦曲珍发布了新的文献求助10
26秒前
caojiarong发布了新的文献求助10
26秒前
skywalker完成签到,获得积分10
26秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736328
求助须知:如何正确求助?哪些是违规求助? 3280084
关于积分的说明 10018742
捐赠科研通 2996769
什么是DOI,文献DOI怎么找? 1644279
邀请新用户注册赠送积分活动 781872
科研通“疑难数据库(出版商)”最低求助积分说明 749554