Learning Situation Hyper-Graphs for Video Question Answering

答疑 计算机科学 嵌入 人工智能 情报检索 图形 理论计算机科学
作者
Aisha Urooj Khan,Hilde Kuehne,Bo Wu,Kim Chheu,Walid Bousselham,Chuang Gan,Niels da Vitoria Lobo,Mubarak Shah
标识
DOI:10.1109/cvpr52729.2023.01429
摘要

Answering questions about complex situations in videos requires not only capturing the presence of actors, objects, and their relations but also the evolution of these relationships over time. A situation hyper-graph is a representation that describes situations as scene sub-graphs for video frames and hyper-edges for connected sub-graphs and has been proposed to capture all such information in a compact structured form. In this work, we propose an architecture for Video Question Answering (VQA) that enables answering questions related to video content by predicting situation hyper-graphs, coined Situation Hyper-Graph based Video Question Answering (SHG- VQA). To this end, we train a situation hyper-graph decoder to implicitly identify graph representations with actions and object/human-object relationships from the input video clip. and to use cross-attention between the predicted situation hyper-graphs and the question embedding to predict the correct answer. The proposed method is trained in an end-to-end manner and optimized by a VQA loss with the cross-entropy function and a Hungarian matching loss for the situation graph prediction. The effectiveness of the proposed architecture is extensively evaluated on two challenging benchmarks: AGQA and STAR. Our results show that learning the underlying situation hyper-graphs helps the system to significantly improve its performance for novel challenges of video question-answering tasks 1 1 Code will be available at https://github.com/aurooj/SHG-VQA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kvici24完成签到,获得积分20
1秒前
bioyong发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
慕青应助shh12采纳,获得10
4秒前
我是老大应助shh12采纳,获得10
4秒前
所所应助一个小太阳鸭采纳,获得10
6秒前
所所应助kvici24采纳,获得10
6秒前
6秒前
7秒前
7秒前
10秒前
猪猪hero发布了新的文献求助10
11秒前
12秒前
13秒前
HughWang完成签到,获得积分10
13秒前
13秒前
我是老大应助酸菜鱼火锅采纳,获得10
13秒前
ff完成签到,获得积分10
15秒前
lxrrrr发布了新的文献求助10
15秒前
tgytc发布了新的文献求助10
16秒前
17秒前
山鬼谣不会枯死的花完成签到,获得积分10
18秒前
momo发布了新的文献求助10
18秒前
19秒前
19秒前
小草三心发布了新的文献求助10
21秒前
21秒前
guardjohn完成签到,获得积分10
21秒前
小curry完成签到,获得积分10
22秒前
你是千堆雪完成签到,获得积分10
22秒前
森气发布了新的文献求助10
22秒前
如意半青发布了新的文献求助10
23秒前
赘婿应助tgytc采纳,获得10
23秒前
23秒前
周周发布了新的文献求助10
23秒前
如意发布了新的文献求助10
23秒前
小curry发布了新的文献求助10
24秒前
独孤叉叉完成签到,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443733
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978605
捐赠科研通 2728387
什么是DOI,文献DOI怎么找? 1496507
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213