Towards Robust Tampered Text Detection in Document Image: New Dataset and New Solution

计算机科学 稳健性(进化) 人工智能 集合(抽象数据类型) 图像(数学) 构造(python库) 情报检索 模式识别(心理学) 自然语言处理 化学 基因 程序设计语言 生物化学
作者
Chunxiao Qu,Chongyu Liu,Yuliang Liu,Xinhong Chen,Dezhi Peng,Fengjun Guo,Lianwen Jin
标识
DOI:10.1109/cvpr52729.2023.00575
摘要

Recently, tampered text detection in document image has attracted increasingly attention due to its essential role on information security. However, detecting visually consistent tampered text in photographed document images is still a main challenge. In this paper, we propose a novel framework to capture more fine-grained clues in complex scenarios for tampered text detection, termed as Document Tampering Detector (DTD), which consists of a Frequency Perception Head (FPH) to compensate the deficiencies caused by the inconspicuous visual features, and a Multi-view Iterative Decoder (MID) for fully utilizing the information of features in different scales. In addition, we design a new training paradigm, termed as Curriculum Learning for Tampering Detection (CLTD), which can address the confusion during the training procedure and thus to improve the robustness for image compression and the ability to generalize. To further facilitate the tampered text detection in document images, we construct a large-scale document image dataset, termed as DocTamper, which contains 170,000 document images of various types. Experiments demonstrate that our proposed DTD outperforms previous state-of-the-art by 9.2%, 26.3% and 12.3% in terms of F-measure on the DocTamper testing set, and the crossdomain testing sets of DocTamper-FCD and DocTamper-SCD, respectively. Codes and dataset will be available at https://github.com/qcf-568/DocTamper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助乐观又晴采纳,获得10
刚刚
刚刚
追寻的筝完成签到,获得积分20
1秒前
甜桃完成签到,获得积分10
1秒前
小鱼干完成签到,获得积分10
1秒前
嗖嗖完成签到,获得积分10
1秒前
莓啤汽完成签到 ,获得积分10
1秒前
1秒前
2秒前
俭朴大碗完成签到,获得积分10
2秒前
向日葵完成签到,获得积分10
2秒前
小明完成签到,获得积分10
2秒前
赛尔号扛把子完成签到 ,获得积分10
3秒前
3秒前
jun发布了新的文献求助10
3秒前
朴素的天蓝完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
iNk应助Grinder采纳,获得10
4秒前
王振强发布了新的文献求助10
4秒前
李某完成签到 ,获得积分10
5秒前
小葡萄发布了新的文献求助10
5秒前
研友_LkYKJZ完成签到,获得积分10
5秒前
5秒前
5秒前
我主沉浮完成签到,获得积分10
5秒前
6秒前
xx完成签到,获得积分10
6秒前
6秒前
wst1988完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
华仔应助coco采纳,获得10
7秒前
7秒前
7秒前
恬恬发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467124
求助须知:如何正确求助?哪些是违规求助? 3059998
关于积分的说明 9069284
捐赠科研通 2750436
什么是DOI,文献DOI怎么找? 1509250
科研通“疑难数据库(出版商)”最低求助积分说明 697185
邀请新用户注册赠送积分活动 697084