A spatial pyramid pooling-based deep reinforcement learning model for dynamic job-shop scheduling problem

计算机科学 动态优先级调度 流水车间调度 单调速率调度 两级调度 调度(生产过程) 公平份额计划 联营 强化学习 循环调度 数学优化 分布式计算 人工智能 地铁列车时刻表 数学 操作系统
作者
Xinquan Wu,Xuefeng Yan
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:160: 106401-106401 被引量:22
标识
DOI:10.1016/j.cor.2023.106401
摘要

The dynamic job-shop scheduling problem (DJSP) is a typical of scheduling tasks where rescheduling is performed when encountering unexpected events such as random job arrivals and rush order. However, the current rescheduling approaches cannot reuse the trained scheduling policies or the experiences due to the variant size of scheduling problems. In this paper, we propose a deep reinforcement learning (DRL) scheduling model for DJSP based on spatial pyramid pooling networks (SPP-Net). A new state representation is proposed based on the machine matrix and remaining time matrix which is decomposed from the scheduling instance matrix. And a new reward function is derived from the area of total scheduling time where the accumulated reward is negatively linearly dependent with the make-span of a scheduling task. Moreover, a size-agnostic scheduling policy is designed based on the SPP-Net and SoftMax function, which is trained by the proximal policy optimization (PPO). Besides, various paired priority dispatching rules (PDR) are used as available actions. Static experiments on classic benchmark instances show that our scheduling model achieves better results on average than existing DRL methods. In addition, dynamic scheduling experiments are tested and our model obtains better results than the PDR scheduling methods in reasonable time when encountering unexpected events such as random job arrivals and rush order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱科研完成签到,获得积分10
1秒前
奥丁蒂法完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
小李子发布了新的文献求助10
3秒前
小田发布了新的文献求助20
4秒前
5秒前
5秒前
灵巧映安发布了新的文献求助10
6秒前
6秒前
超级小飞侠完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
踏实威完成签到,获得积分10
7秒前
SciGPT应助zzaxx123采纳,获得10
8秒前
弄香发布了新的文献求助10
10秒前
欣慰的白羊完成签到,获得积分10
11秒前
fanhongpeng完成签到 ,获得积分10
11秒前
11秒前
12秒前
ermiao发布了新的文献求助10
12秒前
小李子完成签到,获得积分10
14秒前
JamesPei应助曙丽盼采纳,获得10
15秒前
无极微光应助隐形的若灵采纳,获得20
15秒前
打打应助种花家的狗狗采纳,获得10
15秒前
善学以致用应助TingtingGZ采纳,获得10
15秒前
Stroeve完成签到,获得积分10
16秒前
lzylzy完成签到,获得积分10
16秒前
17秒前
17秒前
zh完成签到,获得积分10
19秒前
lzylzy发布了新的文献求助10
20秒前
21秒前
李顺利给李顺利的求助进行了留言
22秒前
22秒前
22秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212