A spatial pyramid pooling-based deep reinforcement learning model for dynamic job-shop scheduling problem

计算机科学 动态优先级调度 流水车间调度 单调速率调度 两级调度 调度(生产过程) 公平份额计划 联营 强化学习 循环调度 数学优化 分布式计算 人工智能 地铁列车时刻表 数学 操作系统
作者
Xinquan Wu,Xuefeng Yan
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:160: 106401-106401 被引量:1
标识
DOI:10.1016/j.cor.2023.106401
摘要

The dynamic job-shop scheduling problem (DJSP) is a typical of scheduling tasks where rescheduling is performed when encountering unexpected events such as random job arrivals and rush order. However, the current rescheduling approaches cannot reuse the trained scheduling policies or the experiences due to the variant size of scheduling problems. In this paper, we propose a deep reinforcement learning (DRL) scheduling model for DJSP based on spatial pyramid pooling networks (SPP-Net). A new state representation is proposed based on the machine matrix and remaining time matrix which is decomposed from the scheduling instance matrix. And a new reward function is derived from the area of total scheduling time where the accumulated reward is negatively linearly dependent with the make-span of a scheduling task. Moreover, a size-agnostic scheduling policy is designed based on the SPP-Net and SoftMax function, which is trained by the proximal policy optimization (PPO). Besides, various paired priority dispatching rules (PDR) are used as available actions. Static experiments on classic benchmark instances show that our scheduling model achieves better results on average than existing DRL methods. In addition, dynamic scheduling experiments are tested and our model obtains better results than the PDR scheduling methods in reasonable time when encountering unexpected events such as random job arrivals and rush order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老实巴交完成签到,获得积分10
1秒前
1秒前
1秒前
vinecho发布了新的文献求助30
1秒前
2秒前
tian完成签到,获得积分0
2秒前
2秒前
羞涩的渊思完成签到 ,获得积分10
3秒前
李爱国应助JoshuaChen采纳,获得10
3秒前
文章刻骨几人知完成签到,获得积分10
3秒前
一颗煤炭完成签到 ,获得积分10
4秒前
123发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助lx840518采纳,获得10
5秒前
小马甲应助美满的曼寒采纳,获得10
5秒前
5秒前
凹凸曼发布了新的文献求助30
6秒前
6秒前
6秒前
HenryXiao关注了科研通微信公众号
7秒前
7秒前
哈哈哈哈哈哈完成签到,获得积分10
7秒前
天天摸鱼完成签到,获得积分10
7秒前
WQY发布了新的文献求助10
8秒前
Yuan关注了科研通微信公众号
8秒前
bkagyin应助迪迦采纳,获得30
8秒前
wocao完成签到 ,获得积分10
8秒前
彧辰完成签到 ,获得积分10
9秒前
9秒前
感动语蝶发布了新的文献求助30
10秒前
幽默的辣白菜完成签到,获得积分10
10秒前
粉红色泡泡关注了科研通微信公众号
10秒前
10秒前
xue关闭了xue文献求助
10秒前
10秒前
11秒前
11秒前
WuchangI发布了新的文献求助10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650