亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A spatial pyramid pooling-based deep reinforcement learning model for dynamic job-shop scheduling problem

计算机科学 动态优先级调度 流水车间调度 单调速率调度 两级调度 调度(生产过程) 公平份额计划 联营 强化学习 循环调度 数学优化 分布式计算 人工智能 地铁列车时刻表 数学 操作系统
作者
Xinquan Wu,Xuefeng Yan
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:160: 106401-106401 被引量:22
标识
DOI:10.1016/j.cor.2023.106401
摘要

The dynamic job-shop scheduling problem (DJSP) is a typical of scheduling tasks where rescheduling is performed when encountering unexpected events such as random job arrivals and rush order. However, the current rescheduling approaches cannot reuse the trained scheduling policies or the experiences due to the variant size of scheduling problems. In this paper, we propose a deep reinforcement learning (DRL) scheduling model for DJSP based on spatial pyramid pooling networks (SPP-Net). A new state representation is proposed based on the machine matrix and remaining time matrix which is decomposed from the scheduling instance matrix. And a new reward function is derived from the area of total scheduling time where the accumulated reward is negatively linearly dependent with the make-span of a scheduling task. Moreover, a size-agnostic scheduling policy is designed based on the SPP-Net and SoftMax function, which is trained by the proximal policy optimization (PPO). Besides, various paired priority dispatching rules (PDR) are used as available actions. Static experiments on classic benchmark instances show that our scheduling model achieves better results on average than existing DRL methods. In addition, dynamic scheduling experiments are tested and our model obtains better results than the PDR scheduling methods in reasonable time when encountering unexpected events such as random job arrivals and rush order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜士萧发布了新的文献求助10
5秒前
13秒前
寻道图强应助ceeray23采纳,获得200
16秒前
18秒前
刘哈哈完成签到 ,获得积分10
18秒前
WU完成签到 ,获得积分10
23秒前
刻苦的小土豆完成签到 ,获得积分10
29秒前
29秒前
30秒前
32秒前
wq完成签到,获得积分10
33秒前
wq发布了新的文献求助10
36秒前
39秒前
41秒前
丘比特应助勤奋灵凡采纳,获得10
43秒前
ceeray23发布了新的文献求助20
45秒前
48秒前
123完成签到 ,获得积分10
50秒前
52秒前
量子星尘发布了新的文献求助10
54秒前
56秒前
勤奋灵凡发布了新的文献求助10
1分钟前
xiezizai完成签到,获得积分10
1分钟前
YuxinChen完成签到 ,获得积分10
1分钟前
1分钟前
瘦瘦以亦发布了新的文献求助10
1分钟前
瘦瘦以亦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Qinghen发布了新的文献求助10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助倒逆之蝶采纳,获得10
2分钟前
2分钟前
热心一江完成签到,获得积分20
2分钟前
年少丶完成签到,获得积分10
2分钟前
热心一江发布了新的文献求助10
2分钟前
poker完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664136
求助须知:如何正确求助?哪些是违规求助? 4858127
关于积分的说明 15107210
捐赠科研通 4822602
什么是DOI,文献DOI怎么找? 2581577
邀请新用户注册赠送积分活动 1535787
关于科研通互助平台的介绍 1494017