亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A spatial pyramid pooling-based deep reinforcement learning model for dynamic job-shop scheduling problem

计算机科学 动态优先级调度 流水车间调度 单调速率调度 两级调度 调度(生产过程) 公平份额计划 联营 强化学习 循环调度 数学优化 分布式计算 人工智能 地铁列车时刻表 数学 操作系统
作者
Xinquan Wu,Xuefeng Yan
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:160: 106401-106401 被引量:1
标识
DOI:10.1016/j.cor.2023.106401
摘要

The dynamic job-shop scheduling problem (DJSP) is a typical of scheduling tasks where rescheduling is performed when encountering unexpected events such as random job arrivals and rush order. However, the current rescheduling approaches cannot reuse the trained scheduling policies or the experiences due to the variant size of scheduling problems. In this paper, we propose a deep reinforcement learning (DRL) scheduling model for DJSP based on spatial pyramid pooling networks (SPP-Net). A new state representation is proposed based on the machine matrix and remaining time matrix which is decomposed from the scheduling instance matrix. And a new reward function is derived from the area of total scheduling time where the accumulated reward is negatively linearly dependent with the make-span of a scheduling task. Moreover, a size-agnostic scheduling policy is designed based on the SPP-Net and SoftMax function, which is trained by the proximal policy optimization (PPO). Besides, various paired priority dispatching rules (PDR) are used as available actions. Static experiments on classic benchmark instances show that our scheduling model achieves better results on average than existing DRL methods. In addition, dynamic scheduling experiments are tested and our model obtains better results than the PDR scheduling methods in reasonable time when encountering unexpected events such as random job arrivals and rush order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
MchemG应助科研通管家采纳,获得10
24秒前
MchemG应助科研通管家采纳,获得10
24秒前
Jim完成签到,获得积分10
24秒前
29秒前
puutteita发布了新的文献求助10
32秒前
wynne313完成签到 ,获得积分10
32秒前
海妍完成签到,获得积分10
35秒前
海妍发布了新的文献求助10
40秒前
我是笨蛋完成签到 ,获得积分10
1分钟前
1分钟前
Artin完成签到,获得积分10
1分钟前
研友_LwlDdn发布了新的文献求助10
1分钟前
nnc发布了新的文献求助50
1分钟前
Weiwei应助nnc采纳,获得50
1分钟前
nnc完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助wuran采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
嘻嘻完成签到,获得积分10
3分钟前
Orange应助3927456843采纳,获得10
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
3分钟前
小蘑菇应助LeezZZZ采纳,获得10
3分钟前
3927456843发布了新的文献求助10
3分钟前
4分钟前
LeezZZZ发布了新的文献求助10
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
3927456843完成签到,获得积分10
4分钟前
Lucas应助梦想家采纳,获得10
4分钟前
科研通AI6应助LeezZZZ采纳,获得10
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
5分钟前
梦想家发布了新的文献求助10
5分钟前
熊啊发布了新的文献求助10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877