A spatial pyramid pooling-based deep reinforcement learning model for dynamic job-shop scheduling problem

计算机科学 动态优先级调度 流水车间调度 单调速率调度 两级调度 调度(生产过程) 公平份额计划 联营 强化学习 循环调度 数学优化 分布式计算 人工智能 地铁列车时刻表 数学 操作系统
作者
Xinquan Wu,Xuefeng Yan
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:160: 106401-106401 被引量:22
标识
DOI:10.1016/j.cor.2023.106401
摘要

The dynamic job-shop scheduling problem (DJSP) is a typical of scheduling tasks where rescheduling is performed when encountering unexpected events such as random job arrivals and rush order. However, the current rescheduling approaches cannot reuse the trained scheduling policies or the experiences due to the variant size of scheduling problems. In this paper, we propose a deep reinforcement learning (DRL) scheduling model for DJSP based on spatial pyramid pooling networks (SPP-Net). A new state representation is proposed based on the machine matrix and remaining time matrix which is decomposed from the scheduling instance matrix. And a new reward function is derived from the area of total scheduling time where the accumulated reward is negatively linearly dependent with the make-span of a scheduling task. Moreover, a size-agnostic scheduling policy is designed based on the SPP-Net and SoftMax function, which is trained by the proximal policy optimization (PPO). Besides, various paired priority dispatching rules (PDR) are used as available actions. Static experiments on classic benchmark instances show that our scheduling model achieves better results on average than existing DRL methods. In addition, dynamic scheduling experiments are tested and our model obtains better results than the PDR scheduling methods in reasonable time when encountering unexpected events such as random job arrivals and rush order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤圆完成签到,获得积分10
1秒前
Ff完成签到 ,获得积分10
1秒前
huhdcid发布了新的文献求助10
2秒前
Jasper应助罗九九采纳,获得10
4秒前
5秒前
5秒前
6秒前
远古遗迹完成签到,获得积分10
7秒前
7秒前
摆烂完成签到 ,获得积分10
8秒前
酷波er应助nate采纳,获得10
9秒前
八个脑袋发布了新的文献求助10
9秒前
六六完成签到 ,获得积分10
10秒前
10秒前
11秒前
musicyy222发布了新的文献求助10
11秒前
bcl发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
府中园马发布了新的文献求助10
15秒前
shadinganchun完成签到,获得积分10
15秒前
Agoni完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
领导范儿应助如沐春风的采纳,获得10
18秒前
科研通AI6应助zzhh采纳,获得30
19秒前
水瓶完成签到,获得积分10
19秒前
kiki发布了新的文献求助10
20秒前
桐桐应助府中园马采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
我是老大应助清风采纳,获得10
23秒前
烙饼发布了新的文献求助20
24秒前
24秒前
25秒前
Hello应助优美的梦松采纳,获得10
25秒前
Banananan发布了新的文献求助10
26秒前
李健的粉丝团团长应助HYL采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533498
求助须知:如何正确求助?哪些是违规求助? 4621711
关于积分的说明 14580035
捐赠科研通 4561794
什么是DOI,文献DOI怎么找? 2499622
邀请新用户注册赠送积分活动 1479350
关于科研通互助平台的介绍 1450588