Multivariate Knowledge Tracking Based on Graph Neural Network in ASSISTments

计算机科学 人工智能 图形 机器学习 多元统计 人工神经网络 多元分析 数据挖掘 理论计算机科学
作者
Zhenchang Xia,Nan Dong,Jia Wu,Chuanguo Ma
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 32-43 被引量:6
标识
DOI:10.1109/tlt.2023.3301011
摘要

As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide personalized guidance, and thus, achieve the purpose of artificial intelligence-assisted education. However, existing methods, for instance, convolutional knowledge tracing, lacking consideration of graph structure and multivariate time-series prediction, result in poor prediction accuracy. Inspired by recent successes of the graph neural network (GNN), we present a novel multivariate graph knowledge tracking (MVGKT) framework to address these limitations. Specifically, a multivariate time-series knowledge tracking system based on spatio-temporal GNN is designed to model student learning trajectories in different spatial and temporal dimensions and capture both temporal dependencies and interstudent correlations. MVGKT incorporates a gate recurrent unit attentive mechanism and graph Fourier transform, discrete Fourier transform, and graph convolution network to increase the predictive accuracy of the student performances. In addition, we design a question difficulty extraction system to obtain information on the difficulty of the questions, and thus, enhance the data features. Numerous experiments on the ASSISTments dataset have demonstrated that MVGKT is superior to existing knowledge-tracking methods on four metrics and has shown that our approach can enhance the predictive accuracy of student performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助刘永红采纳,获得10
刚刚
完美世界应助早早采纳,获得10
2秒前
郭敏菲发布了新的文献求助10
4秒前
科研通AI6应助何以载道采纳,获得10
5秒前
Dai应助lvsehx采纳,获得10
5秒前
汉堡包应助huangnvshi采纳,获得10
6秒前
7秒前
7秒前
科研通AI6应助小梁要加油采纳,获得10
10秒前
10秒前
11秒前
changping应助科研通管家采纳,获得150
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
changping应助科研通管家采纳,获得150
11秒前
科研通AI6应助科研通管家采纳,获得150
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得150
11秒前
传奇3应助科研通管家采纳,获得30
12秒前
changping应助科研通管家采纳,获得150
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
changping应助科研通管家采纳,获得150
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得150
12秒前
Akim应助科研通管家采纳,获得10
12秒前
changping应助科研通管家采纳,获得150
12秒前
浮游应助科研通管家采纳,获得10
12秒前
VDC应助科研通管家采纳,获得30
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135125
求助须知:如何正确求助?哪些是违规求助? 4335681
关于积分的说明 13507506
捐赠科研通 4173285
什么是DOI,文献DOI怎么找? 2288314
邀请新用户注册赠送积分活动 1289041
关于科研通互助平台的介绍 1230093