Multivariate Knowledge Tracking Based on Graph Neural Network in ASSISTments

计算机科学 人工智能 图形 机器学习 知识图 追踪 多元统计 知识抽取 深度学习 跟踪(教育) 人工神经网络 数据挖掘 理论计算机科学 心理学 教育学 操作系统
作者
Zhenchang Xia,Nan Dong,Jia Wu,Cheng Ma
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 32-43 被引量:1
标识
DOI:10.1109/tlt.2023.3301011
摘要

As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide personalized guidance, and thus achieve the purpose of artificial intelligence-assisted education. However, existing methods, for instance, Convolutional Knowledge Tracing(CKT), lacking consideration of graph structure and multi-variate time-series prediction, result in poor prediction accuracy. Inspired by recent successes of the graph neural network (GNN), we present a novel Multi-Variate Graph Knowledge Tracking (MVGKT) framework to address these limitations. Specifically, a multi-variate time-series knowledge tracking system based on spatio-temporal GNN is designed to model student learning trajectories in different spatial and temporal dimensions and capture both temporal dependencies and inter-student correlations. MVGKT incorporates a Gate Recurrent Unit (GRU) attentive mechanism and graph Fourier transform, discrete Fourier transform, and graph convolution network to increase the predictive accuracy of the student performances. Additionally, we design a question difficulty extraction system to obtain information on the difficulty of the questions and thus enhance the data features. Numerous experiments on the ASSISTments dataset have demonstrated that MVGKT is superior to existing knowledge-tracking methods on four metrics and has shown that our approach can enhance the predictive accuracy of student performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孙发布了新的文献求助30
刚刚
刚刚
卡卡滴滴发布了新的文献求助10
1秒前
番茄炒蛋不要番茄le完成签到,获得积分10
1秒前
苗妙完成签到 ,获得积分10
2秒前
lixiangrui110发布了新的文献求助10
3秒前
3秒前
4秒前
小离心机完成签到,获得积分10
4秒前
fap完成签到,获得积分10
4秒前
清澄完成签到,获得积分10
6秒前
小h完成签到,获得积分10
6秒前
6秒前
LinYX完成签到,获得积分10
6秒前
隐形曼青应助renyi97采纳,获得10
7秒前
yi111发布了新的文献求助10
7秒前
破伤疯完成签到 ,获得积分10
7秒前
云辞忧完成签到,获得积分10
8秒前
慕青应助卡卡滴滴采纳,获得10
8秒前
8秒前
9秒前
9秒前
小h发布了新的文献求助10
10秒前
yimuchenlin完成签到,获得积分10
10秒前
爱科研的小胖子完成签到,获得积分10
10秒前
Jasper应助忧郁慕青采纳,获得10
11秒前
Leonardi应助科研通管家采纳,获得220
11秒前
Hello应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
whatever应助科研通管家采纳,获得20
11秒前
iNk应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
vlots应助科研通管家采纳,获得30
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
whatever应助科研通管家采纳,获得20
12秒前
山茶发布了新的文献求助10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175