Multivariate Knowledge Tracking Based on Graph Neural Network in ASSISTments

计算机科学 人工智能 图形 机器学习 多元统计 人工神经网络 多元分析 数据挖掘 理论计算机科学
作者
Zhenchang Xia,Nan Dong,Jia Wu,Chuanguo Ma
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 32-43 被引量:6
标识
DOI:10.1109/tlt.2023.3301011
摘要

As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide personalized guidance, and thus, achieve the purpose of artificial intelligence-assisted education. However, existing methods, for instance, convolutional knowledge tracing, lacking consideration of graph structure and multivariate time-series prediction, result in poor prediction accuracy. Inspired by recent successes of the graph neural network (GNN), we present a novel multivariate graph knowledge tracking (MVGKT) framework to address these limitations. Specifically, a multivariate time-series knowledge tracking system based on spatio-temporal GNN is designed to model student learning trajectories in different spatial and temporal dimensions and capture both temporal dependencies and interstudent correlations. MVGKT incorporates a gate recurrent unit attentive mechanism and graph Fourier transform, discrete Fourier transform, and graph convolution network to increase the predictive accuracy of the student performances. In addition, we design a question difficulty extraction system to obtain information on the difficulty of the questions, and thus, enhance the data features. Numerous experiments on the ASSISTments dataset have demonstrated that MVGKT is superior to existing knowledge-tracking methods on four metrics and has shown that our approach can enhance the predictive accuracy of student performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大大大同完成签到,获得积分20
1秒前
4秒前
彭于晏应助bab采纳,获得10
5秒前
zhj完成签到,获得积分20
5秒前
7秒前
7秒前
8秒前
mr_chxb82发布了新的文献求助10
8秒前
情怀应助林晨则静采纳,获得10
9秒前
9秒前
zhj发布了新的文献求助10
10秒前
10秒前
酷波er应助负责的念柏采纳,获得10
10秒前
11秒前
宁123完成签到 ,获得积分10
12秒前
ybheart发布了新的文献求助10
12秒前
一顿吃不饱完成签到,获得积分0
13秒前
HYYY发布了新的文献求助50
13秒前
dxt发布了新的文献求助10
13秒前
酷酷芷云完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
大桶茄子完成签到,获得积分10
15秒前
16秒前
RianaSun发布了新的文献求助10
17秒前
mr_chxb82完成签到,获得积分20
17秒前
jiaozitop完成签到,获得积分10
18秒前
曹文鹏发布了新的文献求助10
18秒前
18秒前
Dorianne发布了新的文献求助20
19秒前
量子星尘发布了新的文献求助10
19秒前
dddd完成签到 ,获得积分10
20秒前
铁铁发布了新的文献求助10
20秒前
852应助sxmt123456789采纳,获得30
20秒前
jinhuanghuiyu完成签到,获得积分10
20秒前
20秒前
里里要努力完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421991
求助须知:如何正确求助?哪些是违规求助? 4536983
关于积分的说明 14155650
捐赠科研通 4453570
什么是DOI,文献DOI怎么找? 2442949
邀请新用户注册赠送积分活动 1434359
关于科研通互助平台的介绍 1411431