Multivariate Knowledge Tracking Based on Graph Neural Network in ASSISTments

计算机科学 人工智能 图形 机器学习 多元统计 人工神经网络 多元分析 数据挖掘 理论计算机科学
作者
Zhenchang Xia,Nan Dong,Jia Wu,Chuanguo Ma
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 32-43 被引量:6
标识
DOI:10.1109/tlt.2023.3301011
摘要

As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide personalized guidance, and thus, achieve the purpose of artificial intelligence-assisted education. However, existing methods, for instance, convolutional knowledge tracing, lacking consideration of graph structure and multivariate time-series prediction, result in poor prediction accuracy. Inspired by recent successes of the graph neural network (GNN), we present a novel multivariate graph knowledge tracking (MVGKT) framework to address these limitations. Specifically, a multivariate time-series knowledge tracking system based on spatio-temporal GNN is designed to model student learning trajectories in different spatial and temporal dimensions and capture both temporal dependencies and interstudent correlations. MVGKT incorporates a gate recurrent unit attentive mechanism and graph Fourier transform, discrete Fourier transform, and graph convolution network to increase the predictive accuracy of the student performances. In addition, we design a question difficulty extraction system to obtain information on the difficulty of the questions, and thus, enhance the data features. Numerous experiments on the ASSISTments dataset have demonstrated that MVGKT is superior to existing knowledge-tracking methods on four metrics and has shown that our approach can enhance the predictive accuracy of student performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上书雁完成签到 ,获得积分10
刚刚
齐qqqqqqq完成签到 ,获得积分10
刚刚
黑鲨完成签到 ,获得积分10
2秒前
FashionBoy应助好运连连采纳,获得10
2秒前
5秒前
吴雨完成签到 ,获得积分20
5秒前
santiago完成签到,获得积分10
5秒前
6秒前
6秒前
pebble完成签到,获得积分10
7秒前
8秒前
梓i木完成签到 ,获得积分10
8秒前
天天快乐应助years采纳,获得10
9秒前
tutu发布了新的文献求助10
9秒前
10秒前
11秒前
百浪多息发布了新的文献求助10
11秒前
乐观的颦发布了新的文献求助10
12秒前
hahaha发布了新的文献求助10
12秒前
布布发布了新的文献求助10
13秒前
好运连连发布了新的文献求助10
13秒前
13秒前
14秒前
Summer完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
Steve完成签到,获得积分10
16秒前
993494543完成签到,获得积分10
16秒前
Camellia发布了新的文献求助10
17秒前
YY发布了新的文献求助30
17秒前
Hello应助百浪多息采纳,获得10
17秒前
王肖宁发布了新的文献求助10
18秒前
18秒前
20秒前
秋澄完成签到 ,获得积分10
23秒前
24秒前
时光中的微粒完成签到 ,获得积分10
25秒前
lixiaorui发布了新的文献求助10
25秒前
科研通AI2S应助山沟沟采纳,获得10
26秒前
百浪多息完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093