Multivariate Knowledge Tracking Based on Graph Neural Network in ASSISTments

计算机科学 人工智能 图形 机器学习 多元统计 人工神经网络 多元分析 数据挖掘 理论计算机科学
作者
Zhenchang Xia,Nan Dong,Jia Wu,Chuanguo Ma
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 32-43 被引量:6
标识
DOI:10.1109/tlt.2023.3301011
摘要

As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide personalized guidance, and thus, achieve the purpose of artificial intelligence-assisted education. However, existing methods, for instance, convolutional knowledge tracing, lacking consideration of graph structure and multivariate time-series prediction, result in poor prediction accuracy. Inspired by recent successes of the graph neural network (GNN), we present a novel multivariate graph knowledge tracking (MVGKT) framework to address these limitations. Specifically, a multivariate time-series knowledge tracking system based on spatio-temporal GNN is designed to model student learning trajectories in different spatial and temporal dimensions and capture both temporal dependencies and interstudent correlations. MVGKT incorporates a gate recurrent unit attentive mechanism and graph Fourier transform, discrete Fourier transform, and graph convolution network to increase the predictive accuracy of the student performances. In addition, we design a question difficulty extraction system to obtain information on the difficulty of the questions, and thus, enhance the data features. Numerous experiments on the ASSISTments dataset have demonstrated that MVGKT is superior to existing knowledge-tracking methods on four metrics and has shown that our approach can enhance the predictive accuracy of student performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orange9发布了新的文献求助10
1秒前
nifty完成签到,获得积分10
1秒前
1秒前
充电宝应助就爱从黑巧采纳,获得30
2秒前
步步发布了新的文献求助20
2秒前
Young应助毛毛采纳,获得10
2秒前
科研通AI6应助毛毛采纳,获得10
2秒前
3秒前
3秒前
Young应助Dprisk采纳,获得10
3秒前
Folium完成签到,获得积分10
3秒前
小二郎应助gao采纳,获得10
4秒前
Grinde发布了新的文献求助10
4秒前
俏皮晓曼发布了新的文献求助10
4秒前
隐形曼青应助姿姿采纳,获得10
4秒前
July发布了新的文献求助10
4秒前
nini应助球球的铲屎官采纳,获得20
5秒前
5秒前
归尘发布了新的文献求助10
5秒前
5秒前
6秒前
pretzel完成签到,获得积分10
6秒前
大个应助微笑翠桃采纳,获得10
6秒前
阔达远山完成签到,获得积分10
7秒前
li关注了科研通微信公众号
8秒前
lulu发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
旺旺完成签到,获得积分10
9秒前
科研通AI6应助啦啦王采纳,获得10
9秒前
wangcc完成签到 ,获得积分10
9秒前
9秒前
cc发布了新的文献求助30
10秒前
Summeryz920完成签到,获得积分10
10秒前
11秒前
12秒前
Yjy发布了新的文献求助10
12秒前
慕青应助大胆妙竹采纳,获得10
12秒前
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736