Oxygen vacancy engineering on copper-manganese spinel surface for enhancing toluene catalytic combustion: A comparative study of acid treatment and alkali treatment

催化作用 催化燃烧 尖晶石 无机化学 甲苯 化学 氧气 燃烧 碱金属 材料科学 有机化学 冶金
作者
Yu Yang,Wenzhe Si,Yue Peng,Jianjun Chen,Yu Wang,Deli Chen,Zhenbang Tian,Jing Wang,Junhua Li
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:340: 123142-123142 被引量:48
标识
DOI:10.1016/j.apcatb.2023.123142
摘要

Copper-manganese spinel is a low-cost VOCs catalytic combustion catalyst with good performance. Oxygen vacancy has excellent properties for oxygen activation and VOCs dehydrogenation activation, which is beneficial for the catalytic combustion of VOCs. In this study, a large number of oxygen vacancies were introduced on the copper-manganese spinel surface by selective dissolution method (acid treatment and alkali treatment) for catalytic combustion of toluene. Furthermore, the effects of acid treatment and alkali treatment on the catalytic performance, oxygen vacancy amount, physical and chemical properties, and toluene catalytic combustion mechanism of copper-manganese spinel were studied. Both acid treatment and alkali treatment can produce large quantities of oxygen vacancies on the copper-manganese spinel surface. The generation of surface oxygen vacancies can greatly improve the catalytic combustion activity of copper-manganese spinel. At 240 °C, the combustion rate of toluene increased by 8.8 times for the acid-treated catalyst and 11.2 times for the alkali-treated catalyst. The numerous surface oxygen vacancies, Mn3+/Mn4+ at the ratio of 1.11 and appropriate acidity result in the alkali-treated catalyst exhibiting excellent catalytic activity and stability for toluene combustion. This strategy provides a new method to further improve catalytic combustion activity of copper-manganese spinel and a reference for the development of the surface oxygen vacancy engineering of transition metal oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书立方完成签到 ,获得积分10
1秒前
1秒前
metalmd完成签到,获得积分10
1秒前
研友_08okB8完成签到,获得积分10
2秒前
Zn应助还不如瞎写采纳,获得10
2秒前
迟大猫应助无辜之卉采纳,获得10
2秒前
搜集达人应助无辜之卉采纳,获得10
2秒前
王玉琴发布了新的文献求助20
2秒前
okghy完成签到 ,获得积分10
3秒前
YYY完成签到 ,获得积分10
3秒前
pinging应助肖俊彦采纳,获得10
3秒前
八八发布了新的文献求助20
4秒前
通~发布了新的文献求助30
4秒前
淡定的思松应助Ryan采纳,获得10
4秒前
李来仪发布了新的文献求助10
4秒前
5秒前
封小封完成签到,获得积分10
5秒前
面面完成签到,获得积分20
5秒前
笑点低梦露完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
DD完成签到,获得积分10
7秒前
今非完成签到,获得积分10
7秒前
研友_VZG7GZ应助LiShin采纳,获得10
7秒前
wangye完成签到,获得积分10
8秒前
糜厉完成签到,获得积分10
9秒前
9秒前
希望天下0贩的0应助谢安采纳,获得10
9秒前
10秒前
10秒前
wangye发布了新的文献求助10
10秒前
拼搏起眸完成签到 ,获得积分20
11秒前
11秒前
哈哈哈发布了新的文献求助10
11秒前
小敦关注了科研通微信公众号
12秒前
最优解完成签到,获得积分10
12秒前
海棠听风完成签到,获得积分10
12秒前
WUYANG完成签到,获得积分10
13秒前
情怀应助javalin采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794