Two-Dimensional Graphene-Based Potassium Channels Built at an Oil/Water Interface

石墨烯 接口(物质) 材料科学 化学工程 复合材料 纳米技术 工程类 冶金 润湿 坐滴法
作者
Xiaoyuan Wang,Hongli Yang,Zhinong Yu,Zengtao Zhang,Yong Chen
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:16 (15): 5393-5393
标识
DOI:10.3390/ma16155393
摘要

Graphene-based laminar membranes exhibit remarkable ion sieving properties, but their monovalent ion selectivity is still low and much less than the natural ion channels. Inspired by the elementary structure/function relationships of biological ion channels embedded in biomembranes, a new strategy is proposed herein to mimic biological K+ channels by using the graphene laminar membrane (GLM) composed of two-dimensional (2D) angstrom(Å)-scale channels to support a simple model of semi-biomembrane, namely oil/water (O/W) interface. It is found that K+ is strongly preferred over Na+ and Li+ for transferring across the GLM-supported water/1,2-dichloroethane (W/DCE) interface within the same potential window (-0.1-0.6 V), although the monovalent ion selectivity of GLM under the aqueous solution is still low (K+/Na+~1.11 and K+/Li+~1.35). Moreover, the voltammetric responses corresponding to the ion transfer of NH4+ observed at the GLM-supported W/DCE interface also show that NH4+ can often pass through the biological K+ channels due to their comparable hydration-free energies and cation-π interactions. The underlying mechanism of as-observed K+ selective voltammetric responses is discussed and found to be consistent with the energy balance of cationic partial-dehydration (energetic costs) and cation-π interaction (energetic gains) as involved in biological K+ channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lll发布了新的文献求助10
2秒前
Levin发布了新的文献求助10
2秒前
ei123应助能干宛秋采纳,获得30
3秒前
3秒前
漂亮的人人人完成签到 ,获得积分10
3秒前
4秒前
ldx发布了新的文献求助10
4秒前
酷波er应助SSS水鱼采纳,获得30
4秒前
领导范儿应助YUN采纳,获得30
5秒前
慕青应助笑傲江湖采纳,获得10
6秒前
7秒前
洛言lj发布了新的文献求助10
7秒前
擦擦车完成签到,获得积分20
8秒前
8秒前
xiaoma完成签到,获得积分10
9秒前
田様应助Djnsbj采纳,获得10
10秒前
擦擦车发布了新的文献求助10
10秒前
10秒前
Jerry完成签到,获得积分10
10秒前
七友完成签到,获得积分10
12秒前
13秒前
自己发布了新的文献求助10
13秒前
阿六儿发布了新的文献求助10
14秒前
15秒前
苏州小北发布了新的文献求助10
15秒前
斑其发布了新的文献求助30
16秒前
17秒前
17秒前
清爽乐菱应助plain采纳,获得10
17秒前
义气珩完成签到,获得积分10
18秒前
18秒前
迷路千青发布了新的文献求助30
18秒前
十六发布了新的文献求助10
19秒前
20秒前
难过的访文完成签到 ,获得积分10
20秒前
xuanwu发布了新的文献求助10
21秒前
21秒前
23秒前
rikii完成签到 ,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420