亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rethinking Transformers for Semantic Segmentation of Remote Sensing Images

计算机科学 编码器 增采样 人工智能 变压器 分割 卷积神经网络 模式识别(心理学) 计算机视觉 特征提取 图像(数学) 量子力学 操作系统 物理 电压
作者
Yuheng Liu,Yifan Zhang,Ye Wang,Shaohui Mei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:73
标识
DOI:10.1109/tgrs.2023.3302024
摘要

Transformer has been widely applied in image processing tasks as a substitute for Convolutional Neural Networks (CNNs) for feature extraction due to its superiority in global context modeling and flexibility in model generalization. However, the existing transformer-based methods for semantic segmentation of Remote Sensing (RS) images are still with several limitations, which can be summarized into two main aspects: 1) the transformer encoder is generally combined with CNN-based decoder, leading to inconsistency in feature representations; 2) the strategies for global and local context information utilization are not sufficiently effective. Therefore, in this paper, a Global-Local Transformer Segmentor (GLOTS) framework is proposed for semantic segmentation of RS images to acquire consistent feature representations by adopting transformers for both encoding and decoding, in which a Masked Image Modeling (MIM) pretrained transformer encoder is adopted to learn semantic-rich representations of input images, and a multi-scale global-local transformer decoder is designed to fully exploit the global and local features. Specifically, the transformer decoder uses a feature separation-aggregation module (FSAM) to utilize the feature adequately at different scales and adopts a global-local attention module (GLAM) containing Global Attention Block (GAB) and Local Attention Block (LAB) to capture the global and local context information respectively. Furthermore, a Learnable Progressive Upsampling Strategy (LPUS) is proposed to restore the resolution progressively, which can flexibly recover the fine-grained details in the upsampling process. Experimental results on the three benchmark RS datasets demonstrate that the proposed GLOTS is capable of achieving better performance with some state-of-the-art methods, and the superiority of the proposed framework is also verified by ablation studies. The code will be available at https://github.com/lyhnsn/GLOTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Cmqq采纳,获得10
4秒前
Qy0306完成签到,获得积分10
5秒前
5秒前
16秒前
打打应助努力学习的小福采纳,获得10
20秒前
Cmqq发布了新的文献求助10
21秒前
31秒前
34秒前
42秒前
haan完成签到,获得积分10
44秒前
haan发布了新的文献求助10
46秒前
义气幼珊完成签到 ,获得积分10
48秒前
49秒前
柳贯一完成签到,获得积分10
51秒前
爆米花应助haan采纳,获得10
51秒前
充电宝应助Cmqq采纳,获得10
54秒前
优美紫槐应助健康的远航采纳,获得10
56秒前
有风的地方完成签到 ,获得积分10
1分钟前
YujieJin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
wrry完成签到,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
1分钟前
丘比特应助Cmqq采纳,获得10
1分钟前
1分钟前
1分钟前
小年小少发布了新的文献求助10
1分钟前
Dr. Chen发布了新的文献求助10
1分钟前
令狐冲完成签到 ,获得积分10
1分钟前
Cassiel完成签到,获得积分10
1分钟前
hahahan完成签到 ,获得积分10
2分钟前
上官若男应助Passion采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898