Rethinking Transformers for Semantic Segmentation of Remote Sensing Images

计算机科学 编码器 增采样 人工智能 变压器 分割 卷积神经网络 模式识别(心理学) 计算机视觉 特征提取 图像(数学) 物理 量子力学 电压 操作系统
作者
Yuheng Liu,Yifan Zhang,Ye Wang,Shaohui Mei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:17
标识
DOI:10.1109/tgrs.2023.3302024
摘要

Transformer has been widely applied in image processing tasks as a substitute for Convolutional Neural Networks (CNNs) for feature extraction due to its superiority in global context modeling and flexibility in model generalization. However, the existing transformer-based methods for semantic segmentation of Remote Sensing (RS) images are still with several limitations, which can be summarized into two main aspects: 1) the transformer encoder is generally combined with CNN-based decoder, leading to inconsistency in feature representations; 2) the strategies for global and local context information utilization are not sufficiently effective. Therefore, in this paper, a Global-Local Transformer Segmentor (GLOTS) framework is proposed for semantic segmentation of RS images to acquire consistent feature representations by adopting transformers for both encoding and decoding, in which a Masked Image Modeling (MIM) pretrained transformer encoder is adopted to learn semantic-rich representations of input images, and a multi-scale global-local transformer decoder is designed to fully exploit the global and local features. Specifically, the transformer decoder uses a feature separation-aggregation module (FSAM) to utilize the feature adequately at different scales and adopts a global-local attention module (GLAM) containing Global Attention Block (GAB) and Local Attention Block (LAB) to capture the global and local context information respectively. Furthermore, a Learnable Progressive Upsampling Strategy (LPUS) is proposed to restore the resolution progressively, which can flexibly recover the fine-grained details in the upsampling process. Experimental results on the three benchmark RS datasets demonstrate that the proposed GLOTS is capable of achieving better performance with some state-of-the-art methods, and the superiority of the proposed framework is also verified by ablation studies. The code will be available at https://github.com/lyhnsn/GLOTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怂mi完成签到,获得积分10
1秒前
甜橙发布了新的文献求助10
1秒前
凤凤发布了新的文献求助10
1秒前
微信研友完成签到,获得积分10
2秒前
笃定发布了新的文献求助10
2秒前
DAXX完成签到,获得积分10
2秒前
3秒前
易寒完成签到,获得积分10
3秒前
FashionBoy应助uuuu采纳,获得10
4秒前
Iris完成签到,获得积分10
4秒前
嘟嘟发布了新的文献求助10
4秒前
4秒前
文明8完成签到,获得积分10
5秒前
LL发布了新的文献求助10
6秒前
55555发布了新的文献求助10
7秒前
7秒前
龙龙完成签到 ,获得积分10
7秒前
大个应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得30
9秒前
wanci应助科研通管家采纳,获得20
9秒前
曲夜白完成签到 ,获得积分10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
善学以致用应助wuuuuuuu采纳,获得10
10秒前
橘子屿布丁完成签到,获得积分10
11秒前
Xifandoufu完成签到,获得积分10
13秒前
南小琴发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137308
求助须知:如何正确求助?哪些是违规求助? 2788393
关于积分的说明 7786079
捐赠科研通 2444547
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023