Rh-doped ultrathin NiFeLDH nanosheets drive efficient photocatalytic water splitting

光催化 分解水 纳米片 光电流 材料科学 光催化分解水 化学工程 电子转移 半导体 可见光谱 载流子 纳米技术 光电子学 光化学 化学 催化作用 工程类 生物化学
作者
Chandra Shobha Vennapoosa,Arun Karmakar,Yendrapati Taraka Prabhu,B. Moses Abraham,Subrata Kumar Kundu,Ujjwal Pal
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:52: 371-384 被引量:15
标识
DOI:10.1016/j.ijhydene.2023.02.025
摘要

NiFeLDH (Layered double hydroxide) semiconductors are promising for harnessing light energy. The development of transition metal-based photocatalysts consisting of rhodium building blocks is not only beneficial for the separation and transfer of photo-generated carriers in photocatalytic reactions but also an effective means of widening the optical window of light absorption. In this report, a facile hydrothermal approach is employed in modulating NiFeLDH nanosheets arrays with optimal molar ratio of Rhodium (Rh) in LDH to engineer a robust hierarchical NiFeLDH-Rh photocatalytic system towords efficient hydrogen evolution reaction (HER) under visible light. In a systematic investigation, the NiFeLDH is grown on nickel foam and controlled doping of Rhodium led to fine-tuning of their electronic structure and efficient visible light-driven proton reduction system due to its multiple accessible active sites boosting the photocatalytic performance. Furthermore, the 2D hierarchical nanosheet arrays can speed up electron diffusion and assure fast electron/mass transfer while maintaining high photocatalytic stability. The NiFeLDH-Rh composite demonstrated an enhanced hydrogen generation rate of 2.09 mmolg−1h−1 (AQY = 6.1%). The photocurrent density and transient photocurrent curve show rapid charge transfer as well as the unique electron transfer paths through the contact surface, resulting in efficient charge separation. Moreover DFT and photoelectrochemical studies reveal higher HER activity due to the augmented electric field between Rh and NiFeLDH complex. This research offers a novel strategy and new insights into the investigation of highly active photocatalysts for overall water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ethan完成签到,获得积分10
刚刚
所所应助111采纳,获得10
刚刚
维克托完成签到 ,获得积分10
1秒前
小怀完成签到 ,获得积分10
2秒前
脑洞疼应助liuhao采纳,获得10
3秒前
完蛋发布了新的文献求助10
3秒前
归尘发布了新的文献求助10
4秒前
断绝的发布了新的文献求助10
5秒前
5秒前
玉如风关注了科研通微信公众号
5秒前
6秒前
结实的荷发布了新的文献求助10
6秒前
小西给小西的求助进行了留言
6秒前
小二郎应助ZZZ采纳,获得10
6秒前
7秒前
Wand完成签到,获得积分10
7秒前
柚子发布了新的文献求助10
7秒前
无花果应助Flin采纳,获得10
8秒前
8秒前
jerryang发布了新的文献求助10
9秒前
9秒前
yqb发布了新的文献求助10
10秒前
10秒前
科研通AI5应助孤独曲奇采纳,获得10
10秒前
11秒前
11秒前
奋斗芒果发布了新的文献求助10
12秒前
12秒前
Cc8完成签到,获得积分10
13秒前
赘婿应助小管采纳,获得10
13秒前
36456657应助Ashley采纳,获得10
13秒前
13秒前
13秒前
英俊的铭应助xy820采纳,获得10
13秒前
迦佭完成签到,获得积分10
15秒前
15秒前
16秒前
可爱的函函应助谦让友绿采纳,获得10
17秒前
追求者发布了新的文献求助10
17秒前
OA完成签到,获得积分10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488153
求助须知:如何正确求助?哪些是违规求助? 3075945
关于积分的说明 9142731
捐赠科研通 2768153
什么是DOI,文献DOI怎么找? 1519077
邀请新用户注册赠送积分活动 703495
科研通“疑难数据库(出版商)”最低求助积分说明 701922