纳米颗粒
催化作用
化学工程
锂(药物)
阴极
电极
材料科学
钴
吸附
碳纤维
纳米技术
氧化还原
复合材料
化学
物理化学
工程类
有机化学
复合数
医学
内分泌学
冶金
作者
Ning Chai,Yujie Qi,Qinhua Gu,Junnan Chen,Ming Lu,Xia Zhang,Bingsen Zhang
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:15 (11): 5327-5336
被引量:8
摘要
Lithium-sulfur (Li-S) batteries, as one of the new energy storage batteries, show immense potential due to their high theoretical specific capacity and theoretical energy density. However, there are still some problems to be solved, among which the shuttle effect of lithium polysulfides is one extremely serious issue with respect to the industrial application of Li-S batteries. Rational design of electrode materials with effective catalytic conversion ability is an effective route to accelerate the conversion of lithium polysulfides (LiPSs). Herein, considering the adsorption and catalysis of LiPSs, CoOx nanoparticles (NPs) loaded on carbon sphere composites (CoOx/CS) were designed and constructed as cathode materials. The CoOx NPs obtained, with ultralow weight ratio and uniform distribution, consist of CoO, Co3O4, and metallic Co. The polar CoO and Co3O4 enable chemical adsorption towards LiPSs through Co-S coordination, and the conductive metallic Co can improve electronic conductivity and reduce impedance, which is beneficial for ion diffusion at the cathode. Based on these synergistic effects, the CoOx/CS electrode exhibits accelerated redox kinetics and enhanced catalytic activity for conversion of LiPSs. Consequently, the CoOx/CS cathode delivers improved cycling performance, with an initial capacity of 980.8 mA h g-1 at 0.1C and a reversible specific capacity of 408.4 mA h g-1 after 200 cycles, along with enhanced rate performance. This work provides a facile route to construct cobalt-based catalytic electrodes for Li-S batteries, and promotes understanding of the LiPSs conversion mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI