Feature based analysis of thermal images for emotion recognition

计算机科学 感情的 人工智能 鉴定(生物学) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 直方图 特征提取 机器学习 自然语言处理 图像(数学) 哲学 语言学 植物 认识论 生物 程序设计语言
作者
Suparna Rooj,Aurobinda Routray,Manas K. Mandal
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105809-105809 被引量:8
标识
DOI:10.1016/j.engappai.2022.105809
摘要

Thermal imaging has recently been investigated in automatic emotion identification to get an insight into reliable information about human emotion. However, the methods employed to classify thermal emotion in literature are discrete and randomly selected. These methods are deficit in explanation and also lack adequate justification for the obtained result. The assertions above are supported by the fact that, despite previous research, the existing methods are not successful in real-time and are resistant to obstacles such as spectacles, facial hair, and body movements. So there is enough room for more methods and thorough research into the effects of various features on thermal images and the characteristics of thermal emotion that are conveyed by those features. To address the issue, this research provides an in-depth performance analysis of hand-crafted features on thermal images while distinguishing emotion. In this study, we examine the inherent spatial and spectral aspects of several histogram-based feature descriptors along with a set of classifiers to classify thermal emotion. The study is carried out on two datasets, each with a distinct pseudo-color palette and sample size. Moreover, to the best of our knowledge, no work has been done to evaluate their feature extraction methods for the subject-independent case of thermal emotion recognition. Constructing a subject-independent model is the first step in classifying thermal emotive faces in real-time. This paper offers an early draft of the same, employing hand-crafted features. The author attempts to highlight the enormous scope of this research area because the subject-independent result obtained is weak. The existence of mixed emotions and inter-person variability are just two of the most likely causes of low accuracy and precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
乐乐应助www采纳,获得10
刚刚
洛洛发布了新的文献求助10
刚刚
张笑圣发布了新的文献求助10
1秒前
xiao发布了新的文献求助10
1秒前
baiyixuan发布了新的文献求助20
1秒前
FashionBoy应助南宫傻姑采纳,获得10
2秒前
2秒前
整点儿薯条完成签到,获得积分10
3秒前
3秒前
乐呵乐呵发布了新的文献求助10
4秒前
和和和完成签到,获得积分10
4秒前
4秒前
英俊的铭应助xiaowang采纳,获得30
4秒前
4秒前
4秒前
4秒前
pj发布了新的文献求助10
4秒前
玩命的雁丝完成签到 ,获得积分10
5秒前
英俊的铭应助完美连虎采纳,获得10
5秒前
6秒前
米糊发布了新的文献求助10
6秒前
王悦靓发布了新的文献求助10
7秒前
7秒前
甜的瓜发布了新的文献求助10
8秒前
8秒前
苏卿应助高高采纳,获得30
9秒前
9秒前
笑开口发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
reeeveb发布了新的文献求助10
11秒前
在水一方应助乐呵乐呵采纳,获得10
11秒前
昏睡的蟠桃给四叶草的求助进行了留言
11秒前
111完成签到,获得积分10
12秒前
12秒前
wait发布了新的文献求助10
12秒前
ccm应助爱学习的叭叭采纳,获得10
12秒前
comm发布了新的文献求助10
12秒前
善学以致用应助沐沐采纳,获得10
13秒前
Kaysarr完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491528
求助须知:如何正确求助?哪些是违规求助? 4589949
关于积分的说明 14428449
捐赠科研通 4522201
什么是DOI,文献DOI怎么找? 2477761
邀请新用户注册赠送积分活动 1462901
关于科研通互助平台的介绍 1435597