Feature based analysis of thermal images for emotion recognition

计算机科学 感情的 人工智能 鉴定(生物学) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 直方图 特征提取 机器学习 自然语言处理 图像(数学) 哲学 语言学 植物 认识论 生物 程序设计语言
作者
Suparna Rooj,Aurobinda Routray,Manas K. Mandal
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105809-105809 被引量:8
标识
DOI:10.1016/j.engappai.2022.105809
摘要

Thermal imaging has recently been investigated in automatic emotion identification to get an insight into reliable information about human emotion. However, the methods employed to classify thermal emotion in literature are discrete and randomly selected. These methods are deficit in explanation and also lack adequate justification for the obtained result. The assertions above are supported by the fact that, despite previous research, the existing methods are not successful in real-time and are resistant to obstacles such as spectacles, facial hair, and body movements. So there is enough room for more methods and thorough research into the effects of various features on thermal images and the characteristics of thermal emotion that are conveyed by those features. To address the issue, this research provides an in-depth performance analysis of hand-crafted features on thermal images while distinguishing emotion. In this study, we examine the inherent spatial and spectral aspects of several histogram-based feature descriptors along with a set of classifiers to classify thermal emotion. The study is carried out on two datasets, each with a distinct pseudo-color palette and sample size. Moreover, to the best of our knowledge, no work has been done to evaluate their feature extraction methods for the subject-independent case of thermal emotion recognition. Constructing a subject-independent model is the first step in classifying thermal emotive faces in real-time. This paper offers an early draft of the same, employing hand-crafted features. The author attempts to highlight the enormous scope of this research area because the subject-independent result obtained is weak. The existence of mixed emotions and inter-person variability are just two of the most likely causes of low accuracy and precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李萍萍完成签到,获得积分10
刚刚
乖拉完成签到,获得积分10
刚刚
1秒前
1秒前
rtaxa完成签到,获得积分0
2秒前
ZLX完成签到,获得积分10
2秒前
冯蜜柚子茶完成签到,获得积分10
2秒前
不可思宇发布了新的文献求助10
2秒前
L.C.发布了新的文献求助10
2秒前
俏皮的馒头完成签到,获得积分10
2秒前
2秒前
愤怒的无施完成签到,获得积分10
3秒前
lololoan发布了新的文献求助10
3秒前
3秒前
www发布了新的文献求助10
3秒前
科研通AI6应助XuLinan采纳,获得10
4秒前
ceeray23发布了新的文献求助20
4秒前
4秒前
qfgp发布了新的文献求助10
5秒前
5秒前
然来溪完成签到 ,获得积分10
5秒前
5秒前
6秒前
sswbzh应助24豆采纳,获得100
6秒前
6秒前
伶俐乌发布了新的文献求助10
6秒前
feng1235发布了新的文献求助10
7秒前
7秒前
7秒前
ZYX发布了新的文献求助10
7秒前
koi发布了新的文献求助10
7秒前
psycho完成签到,获得积分10
8秒前
9秒前
胡子完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
Owen应助小北采纳,获得10
9秒前
宋世伟完成签到,获得积分20
10秒前
L.C.完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297