Feature based analysis of thermal images for emotion recognition

计算机科学 感情的 人工智能 鉴定(生物学) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 直方图 特征提取 机器学习 自然语言处理 图像(数学) 哲学 语言学 植物 认识论 生物 程序设计语言
作者
Suparna Rooj,Aurobinda Routray,Manas K. Mandal
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105809-105809 被引量:8
标识
DOI:10.1016/j.engappai.2022.105809
摘要

Thermal imaging has recently been investigated in automatic emotion identification to get an insight into reliable information about human emotion. However, the methods employed to classify thermal emotion in literature are discrete and randomly selected. These methods are deficit in explanation and also lack adequate justification for the obtained result. The assertions above are supported by the fact that, despite previous research, the existing methods are not successful in real-time and are resistant to obstacles such as spectacles, facial hair, and body movements. So there is enough room for more methods and thorough research into the effects of various features on thermal images and the characteristics of thermal emotion that are conveyed by those features. To address the issue, this research provides an in-depth performance analysis of hand-crafted features on thermal images while distinguishing emotion. In this study, we examine the inherent spatial and spectral aspects of several histogram-based feature descriptors along with a set of classifiers to classify thermal emotion. The study is carried out on two datasets, each with a distinct pseudo-color palette and sample size. Moreover, to the best of our knowledge, no work has been done to evaluate their feature extraction methods for the subject-independent case of thermal emotion recognition. Constructing a subject-independent model is the first step in classifying thermal emotive faces in real-time. This paper offers an early draft of the same, employing hand-crafted features. The author attempts to highlight the enormous scope of this research area because the subject-independent result obtained is weak. The existence of mixed emotions and inter-person variability are just two of the most likely causes of low accuracy and precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fzh发布了新的文献求助10
刚刚
刚刚
1秒前
4秒前
KYTYYDS发布了新的文献求助10
5秒前
HanluMa完成签到 ,获得积分10
5秒前
fzh完成签到,获得积分10
9秒前
Jenny完成签到,获得积分10
11秒前
伟立完成签到,获得积分10
11秒前
18秒前
19秒前
然12138完成签到 ,获得积分10
19秒前
香蕉觅云应助SnownS采纳,获得10
19秒前
川荣李奈完成签到 ,获得积分10
23秒前
xinbowey发布了新的文献求助10
23秒前
火星上向珊完成签到,获得积分10
26秒前
28秒前
柳条儿完成签到,获得积分10
28秒前
如意幻枫完成签到,获得积分10
32秒前
33秒前
33秒前
渔婆发布了新的文献求助10
34秒前
36秒前
风趣的泥猴桃完成签到 ,获得积分10
37秒前
37秒前
zgsjymysmyy发布了新的文献求助30
38秒前
fuchao完成签到,获得积分10
38秒前
牧谷发布了新的文献求助10
39秒前
好吃的火龙果完成签到 ,获得积分10
40秒前
天边发布了新的文献求助10
41秒前
东方越彬发布了新的文献求助10
42秒前
赘婿应助sunny采纳,获得10
42秒前
42秒前
42秒前
SnownS完成签到,获得积分10
43秒前
123123发布了新的文献求助10
47秒前
SnownS发布了新的文献求助10
48秒前
48秒前
48秒前
汉堡包应助天边采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566