Feature based analysis of thermal images for emotion recognition

计算机科学 感情的 人工智能 鉴定(生物学) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 直方图 特征提取 机器学习 自然语言处理 图像(数学) 哲学 语言学 植物 认识论 生物 程序设计语言
作者
Suparna Rooj,Aurobinda Routray,Manas K. Mandal
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105809-105809 被引量:8
标识
DOI:10.1016/j.engappai.2022.105809
摘要

Thermal imaging has recently been investigated in automatic emotion identification to get an insight into reliable information about human emotion. However, the methods employed to classify thermal emotion in literature are discrete and randomly selected. These methods are deficit in explanation and also lack adequate justification for the obtained result. The assertions above are supported by the fact that, despite previous research, the existing methods are not successful in real-time and are resistant to obstacles such as spectacles, facial hair, and body movements. So there is enough room for more methods and thorough research into the effects of various features on thermal images and the characteristics of thermal emotion that are conveyed by those features. To address the issue, this research provides an in-depth performance analysis of hand-crafted features on thermal images while distinguishing emotion. In this study, we examine the inherent spatial and spectral aspects of several histogram-based feature descriptors along with a set of classifiers to classify thermal emotion. The study is carried out on two datasets, each with a distinct pseudo-color palette and sample size. Moreover, to the best of our knowledge, no work has been done to evaluate their feature extraction methods for the subject-independent case of thermal emotion recognition. Constructing a subject-independent model is the first step in classifying thermal emotive faces in real-time. This paper offers an early draft of the same, employing hand-crafted features. The author attempts to highlight the enormous scope of this research area because the subject-independent result obtained is weak. The existence of mixed emotions and inter-person variability are just two of the most likely causes of low accuracy and precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flyer0505发布了新的文献求助10
刚刚
rocky完成签到,获得积分10
1秒前
单薄的钢笔完成签到,获得积分10
1秒前
喜悦的皮卡丘完成签到,获得积分10
1秒前
2秒前
KYDD完成签到,获得积分10
2秒前
2秒前
共享精神应助如意的馒头采纳,获得10
2秒前
陈文娟完成签到,获得积分10
3秒前
dd发布了新的文献求助10
3秒前
棋子未明猫完成签到 ,获得积分20
3秒前
Iurgnay完成签到,获得积分10
3秒前
dancha发布了新的文献求助10
4秒前
4秒前
5秒前
lzh发布了新的文献求助10
5秒前
怀玉发布了新的文献求助30
5秒前
zt发布了新的文献求助10
5秒前
玉米粥完成签到,获得积分10
5秒前
无极微光应助微凉采纳,获得20
6秒前
知知完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
小用一阵完成签到,获得积分10
7秒前
8秒前
慕青应助甜甜的忆彤采纳,获得10
9秒前
9秒前
香蕉觅云应助tangzanwayne采纳,获得10
9秒前
Hug发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
xixi发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
天天向上发布了新的文献求助10
11秒前
MW完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914