亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature based analysis of thermal images for emotion recognition

计算机科学 感情的 人工智能 鉴定(生物学) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 直方图 特征提取 机器学习 自然语言处理 图像(数学) 哲学 认识论 生物 程序设计语言 植物 语言学
作者
Suparna Rooj,Aurobinda Routray,Manas K. Mandal
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105809-105809 被引量:8
标识
DOI:10.1016/j.engappai.2022.105809
摘要

Thermal imaging has recently been investigated in automatic emotion identification to get an insight into reliable information about human emotion. However, the methods employed to classify thermal emotion in literature are discrete and randomly selected. These methods are deficit in explanation and also lack adequate justification for the obtained result. The assertions above are supported by the fact that, despite previous research, the existing methods are not successful in real-time and are resistant to obstacles such as spectacles, facial hair, and body movements. So there is enough room for more methods and thorough research into the effects of various features on thermal images and the characteristics of thermal emotion that are conveyed by those features. To address the issue, this research provides an in-depth performance analysis of hand-crafted features on thermal images while distinguishing emotion. In this study, we examine the inherent spatial and spectral aspects of several histogram-based feature descriptors along with a set of classifiers to classify thermal emotion. The study is carried out on two datasets, each with a distinct pseudo-color palette and sample size. Moreover, to the best of our knowledge, no work has been done to evaluate their feature extraction methods for the subject-independent case of thermal emotion recognition. Constructing a subject-independent model is the first step in classifying thermal emotive faces in real-time. This paper offers an early draft of the same, employing hand-crafted features. The author attempts to highlight the enormous scope of this research area because the subject-independent result obtained is weak. The existence of mixed emotions and inter-person variability are just two of the most likely causes of low accuracy and precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
zzzz发布了新的文献求助10
10秒前
11秒前
超级碧曼应助Wei采纳,获得10
12秒前
20秒前
52秒前
1分钟前
激动的似狮完成签到,获得积分0
1分钟前
xiaoguai4545完成签到,获得积分10
1分钟前
2分钟前
脑洞疼应助外向白竹采纳,获得10
2分钟前
qkren完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
外向白竹发布了新的文献求助10
3分钟前
3分钟前
外向白竹完成签到,获得积分10
3分钟前
拉长的迎曼完成签到 ,获得积分10
3分钟前
pysa完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
Chris完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
abdo完成签到,获得积分10
5分钟前
矜持完成签到 ,获得积分10
5分钟前
5分钟前
貔貅完成签到 ,获得积分10
6分钟前
sfwrbh完成签到,获得积分20
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
失眠的访枫完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
量子星尘发布了新的文献求助30
7分钟前
酷炫星星完成签到,获得积分20
7分钟前
yiyixt完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788741
求助须知:如何正确求助?哪些是违规求助? 5711548
关于积分的说明 15473875
捐赠科研通 4916750
什么是DOI,文献DOI怎么找? 2646551
邀请新用户注册赠送积分活动 1594225
关于科研通互助平台的介绍 1548651