Feature based analysis of thermal images for emotion recognition

计算机科学 感情的 人工智能 鉴定(生物学) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 直方图 特征提取 机器学习 自然语言处理 图像(数学) 哲学 语言学 植物 认识论 生物 程序设计语言
作者
Suparna Rooj,Aurobinda Routray,Manas K. Mandal
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105809-105809 被引量:8
标识
DOI:10.1016/j.engappai.2022.105809
摘要

Thermal imaging has recently been investigated in automatic emotion identification to get an insight into reliable information about human emotion. However, the methods employed to classify thermal emotion in literature are discrete and randomly selected. These methods are deficit in explanation and also lack adequate justification for the obtained result. The assertions above are supported by the fact that, despite previous research, the existing methods are not successful in real-time and are resistant to obstacles such as spectacles, facial hair, and body movements. So there is enough room for more methods and thorough research into the effects of various features on thermal images and the characteristics of thermal emotion that are conveyed by those features. To address the issue, this research provides an in-depth performance analysis of hand-crafted features on thermal images while distinguishing emotion. In this study, we examine the inherent spatial and spectral aspects of several histogram-based feature descriptors along with a set of classifiers to classify thermal emotion. The study is carried out on two datasets, each with a distinct pseudo-color palette and sample size. Moreover, to the best of our knowledge, no work has been done to evaluate their feature extraction methods for the subject-independent case of thermal emotion recognition. Constructing a subject-independent model is the first step in classifying thermal emotive faces in real-time. This paper offers an early draft of the same, employing hand-crafted features. The author attempts to highlight the enormous scope of this research area because the subject-independent result obtained is weak. The existence of mixed emotions and inter-person variability are just two of the most likely causes of low accuracy and precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ztq完成签到 ,获得积分10
1秒前
穆思柔完成签到,获得积分10
1秒前
1秒前
脑洞疼应助zxyan采纳,获得10
1秒前
科研通AI6应助zhouleiwang采纳,获得10
1秒前
冷傲惠发布了新的文献求助10
1秒前
2秒前
leyang关注了科研通微信公众号
3秒前
顾矜应助张欣宇采纳,获得10
3秒前
3秒前
王婷静完成签到,获得积分10
3秒前
3秒前
yfy_fairy完成签到,获得积分10
3秒前
神明发布了新的文献求助10
4秒前
cc发布了新的文献求助10
4秒前
Salen-Cr发布了新的文献求助10
4秒前
4秒前
科研通AI6应助灿烂千阳采纳,获得10
4秒前
泡芙应助Yiminhua采纳,获得10
4秒前
whj完成签到,获得积分20
4秒前
科研通AI6应助biu采纳,获得10
5秒前
Triumph完成签到,获得积分10
5秒前
xxx完成签到,获得积分20
5秒前
Liz1054发布了新的文献求助10
5秒前
5秒前
慕青应助可爱的海莲采纳,获得10
6秒前
蔡勇强发布了新的文献求助10
6秒前
6秒前
阿七完成签到,获得积分20
7秒前
7秒前
呼啦啦完成签到 ,获得积分10
7秒前
8秒前
大哈鱼完成签到,获得积分20
8秒前
emmm发布了新的文献求助10
8秒前
8秒前
党阳阳完成签到,获得积分10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836