Feature based analysis of thermal images for emotion recognition

计算机科学 感情的 人工智能 鉴定(生物学) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 直方图 特征提取 机器学习 自然语言处理 图像(数学) 哲学 认识论 生物 程序设计语言 植物 语言学
作者
Suparna Rooj,Aurobinda Routray,Manas K. Mandal
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105809-105809 被引量:8
标识
DOI:10.1016/j.engappai.2022.105809
摘要

Thermal imaging has recently been investigated in automatic emotion identification to get an insight into reliable information about human emotion. However, the methods employed to classify thermal emotion in literature are discrete and randomly selected. These methods are deficit in explanation and also lack adequate justification for the obtained result. The assertions above are supported by the fact that, despite previous research, the existing methods are not successful in real-time and are resistant to obstacles such as spectacles, facial hair, and body movements. So there is enough room for more methods and thorough research into the effects of various features on thermal images and the characteristics of thermal emotion that are conveyed by those features. To address the issue, this research provides an in-depth performance analysis of hand-crafted features on thermal images while distinguishing emotion. In this study, we examine the inherent spatial and spectral aspects of several histogram-based feature descriptors along with a set of classifiers to classify thermal emotion. The study is carried out on two datasets, each with a distinct pseudo-color palette and sample size. Moreover, to the best of our knowledge, no work has been done to evaluate their feature extraction methods for the subject-independent case of thermal emotion recognition. Constructing a subject-independent model is the first step in classifying thermal emotive faces in real-time. This paper offers an early draft of the same, employing hand-crafted features. The author attempts to highlight the enormous scope of this research area because the subject-independent result obtained is weak. The existence of mixed emotions and inter-person variability are just two of the most likely causes of low accuracy and precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinyihang发布了新的文献求助10
刚刚
刚刚
刚刚
研友_VZG7GZ应助Tsuki采纳,获得10
刚刚
姚盈盈发布了新的文献求助10
1秒前
iasins完成签到,获得积分10
2秒前
白小白完成签到,获得积分10
2秒前
3秒前
陈艺杨完成签到 ,获得积分10
3秒前
共享精神应助三硝基甲苯采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
自然白安完成签到,获得积分10
4秒前
4秒前
4秒前
shhoing应助欣喜的雪枫采纳,获得10
5秒前
我是老大应助wear88采纳,获得10
5秒前
Jw完成签到,获得积分10
5秒前
天天快乐应助默默莫莫采纳,获得10
5秒前
wrzzz完成签到,获得积分10
5秒前
Max完成签到,获得积分10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
飘逸的烧鹅完成签到 ,获得积分10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
失眠的汽车完成签到,获得积分10
6秒前
天天快乐应助科研通管家采纳,获得30
6秒前
单薄的飞风完成签到,获得积分10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
自然白安发布了新的文献求助10
6秒前
Blitz应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得30
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551876
求助须知:如何正确求助?哪些是违规求助? 4636641
关于积分的说明 14645054
捐赠科研通 4578515
什么是DOI,文献DOI怎么找? 2510927
邀请新用户注册赠送积分活动 1486179
关于科研通互助平台的介绍 1457464