Feature based analysis of thermal images for emotion recognition

计算机科学 感情的 人工智能 鉴定(生物学) 特征(语言学) 模式识别(心理学) 集合(抽象数据类型) 直方图 特征提取 机器学习 自然语言处理 图像(数学) 哲学 认识论 生物 程序设计语言 植物 语言学
作者
Suparna Rooj,Aurobinda Routray,Manas K. Mandal
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105809-105809 被引量:8
标识
DOI:10.1016/j.engappai.2022.105809
摘要

Thermal imaging has recently been investigated in automatic emotion identification to get an insight into reliable information about human emotion. However, the methods employed to classify thermal emotion in literature are discrete and randomly selected. These methods are deficit in explanation and also lack adequate justification for the obtained result. The assertions above are supported by the fact that, despite previous research, the existing methods are not successful in real-time and are resistant to obstacles such as spectacles, facial hair, and body movements. So there is enough room for more methods and thorough research into the effects of various features on thermal images and the characteristics of thermal emotion that are conveyed by those features. To address the issue, this research provides an in-depth performance analysis of hand-crafted features on thermal images while distinguishing emotion. In this study, we examine the inherent spatial and spectral aspects of several histogram-based feature descriptors along with a set of classifiers to classify thermal emotion. The study is carried out on two datasets, each with a distinct pseudo-color palette and sample size. Moreover, to the best of our knowledge, no work has been done to evaluate their feature extraction methods for the subject-independent case of thermal emotion recognition. Constructing a subject-independent model is the first step in classifying thermal emotive faces in real-time. This paper offers an early draft of the same, employing hand-crafted features. The author attempts to highlight the enormous scope of this research area because the subject-independent result obtained is weak. The existence of mixed emotions and inter-person variability are just two of the most likely causes of low accuracy and precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Transformer完成签到,获得积分10
1秒前
tesla完成签到 ,获得积分10
2秒前
3秒前
dungaway发布了新的文献求助10
4秒前
7秒前
隐形曼青应助Andrew采纳,获得20
7秒前
lcx完成签到,获得积分10
8秒前
1111发布了新的文献求助10
8秒前
李爱国应助刘晓倩采纳,获得10
8秒前
yellow_0000完成签到,获得积分10
8秒前
Akim应助YJL采纳,获得10
9秒前
lulu完成签到,获得积分20
9秒前
yang完成签到,获得积分10
11秒前
意义完成签到,获得积分10
11秒前
12秒前
初步发布了新的文献求助20
12秒前
zzzwww发布了新的文献求助10
14秒前
夏天的小沐沐完成签到,获得积分10
14秒前
活力的灵薇完成签到,获得积分10
14秒前
mayimo完成签到,获得积分10
15秒前
16秒前
1111完成签到,获得积分20
17秒前
LUO发布了新的文献求助10
18秒前
景辣条应助sssss采纳,获得10
18秒前
哈哈哈哈完成签到 ,获得积分10
18秒前
英姑应助strings采纳,获得10
20秒前
文房四宝完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
LYB吕发布了新的文献求助10
22秒前
栗子鱼发布了新的文献求助10
23秒前
刘晓倩发布了新的文献求助10
24秒前
kelly发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
Andrew发布了新的文献求助20
27秒前
28秒前
大个应助俭朴问凝采纳,获得10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046