Auto-segmentation of pancreatic tumor in multi-modal image using transferred DSMask R-CNN network

计算机科学 分割 人工智能 模式识别(心理学) 过度拟合 人工神经网络
作者
Yao Yao,Chen Yang,Shuiping Gou,Shuzhe Chen,Xiangrong Zhang,Nuo Tong
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:83: 104583-104583 被引量:7
标识
DOI:10.1016/j.bspc.2023.104583
摘要

Pancreatic tumor segmentation is a difficult task due to the high variable shape, small size and hidden position of organs in patients for adaptive radiation therapy plan. To address the problems of limited labeled data, intra-class inconsistency and inter-class indistinction in pancreas tumor segmentation, a transferred DenseSE-Mask R-CNN (TDSMask R-CNN) Network segmentation model using Dense and SE block embedded is proposed in this paper. The multi-scale features strategy is selected to deal with high variability of pancreas and their tumor. The proposed network can learn complementary information from different modes (PET/MR) images respectively by the attention mechanism to get pancreatic tumor regions in different domain. As a result, the irrelevant information for segmenting the tumor area can be suppressed and get low false positives. Furthermore, accurate tumor location from PET image is transferred MRI training model for guide Dense-SE network learning to alleviate the small label samples and reduce network overfitting. Experimental results show that the proposed method achieves average Dice Similarity Coefficient (DSC) of 78.33%, sensitivity (SEN) of 78.56%, and specificity (SPE) of 99.72% on the collected PET/MR data set, which is superior to the existing method of some literatures. This algorithm can improve the accuracy of pancreatic tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
天道酬勤发布了新的文献求助10
2秒前
3秒前
3秒前
林珍发布了新的文献求助10
4秒前
4秒前
麋鹿完成签到,获得积分10
4秒前
清爽秋白完成签到,获得积分10
4秒前
5秒前
搜集达人应助xxywmt采纳,获得10
5秒前
5秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
木木应助科研通管家采纳,获得10
7秒前
7秒前
木木应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
阿落落呀发布了新的文献求助10
8秒前
Gumiano完成签到,获得积分20
8秒前
橙橙橙发布了新的文献求助10
8秒前
8秒前
聪明水之发布了新的文献求助10
9秒前
苏公子完成签到,获得积分10
9秒前
Zing完成签到,获得积分20
9秒前
10秒前
10秒前
zha完成签到,获得积分10
10秒前
小旭不会飞完成签到,获得积分10
10秒前
胡图图发布了新的文献求助10
10秒前
11秒前
吃饭吧完成签到,获得积分10
11秒前
顾矜应助冷酷严青采纳,获得10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451