High-performance cathode promoted by reduced graphene oxide nanofibers with well-defined interconnected meso-/micro pores for rechargeable Li-Se batteries

材料科学 阴极 石墨烯 电解质 纳米纤维 介孔材料 电化学 氧化物 纳米技术 化学工程 纳米结构 导电体 电极 复合材料 化学 物理化学 工程类 冶金 生物化学 催化作用
作者
Chan Sic Kim,Rakesh Saroha,Hye Sook Choi,Jang Hyeok Oh,Gi Dae Park,Dong‐Won Kang,Jung Sang Cho
出处
期刊:Journal of Industrial and Engineering Chemistry [Elsevier]
卷期号:121: 489-498 被引量:4
标识
DOI:10.1016/j.jiec.2023.02.004
摘要

Highly conductive nanostructures comprising one-dimensional (1D) reduced graphene oxide (rGO) nanofibers (NFs) and bimodal pores i.e., meso-/micropores, as efficient cathode hosts (Bi-P-rGO) for Li–Se batteries were prepared. The highly conductive rGO matrix acts as a self-supporting skeleton to enhance the structural integrity of the nanostructure besides providing numerous conducting pathways for rapid charge transfer. Moreover, highly interconnected chain-like mesopores guarantee efficient electrolyte percolation, whereas the micropores offer highly active material impregnation. Correspondingly, Bi-P-rGO@Se as a high-performance cathode was visualized, which demonstrated an overall enhanced electrochemical performance such as excellent rate capability (up to 20.0C) and overwhelming long-term cycling stability (73% capacity retention at the end of 800cycles with an average capacity decay rate of just 0.03% per cycle at 0.5C rate). The exceptional electrochemical performance of the Bi-P-rGO@Se cathode can be attributed to its highly porous structure, which promises efficient electrolyte infiltration and diffusion of charged species, high active material utilization within micropores, availability of conductive pathways for fast charge transfer, and high structural integrity. Therefore, we anticipate that the structural and electrochemical results presented in this work will provide significant insights into the synthesis of high-performance porous and conductive nanostructures for a wide range of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开那年完成签到,获得积分10
2秒前
zwenng发布了新的文献求助10
2秒前
慕青应助pentayouth采纳,获得30
3秒前
顺利毕业完成签到 ,获得积分10
3秒前
Wang发布了新的文献求助10
4秒前
hotongue发布了新的文献求助10
5秒前
5秒前
Jason李完成签到,获得积分10
6秒前
汉堡包应助摩羯座小黄鸭采纳,获得10
6秒前
无花果应助pentayouth采纳,获得10
7秒前
贤惠的碧空完成签到,获得积分10
8秒前
9秒前
jasper完成签到,获得积分10
10秒前
Singularity应助pentayouth采纳,获得10
12秒前
TYU2021发布了新的文献求助10
12秒前
李倇仪发布了新的文献求助10
13秒前
13秒前
hotongue完成签到,获得积分10
13秒前
Singularity应助pentayouth采纳,获得10
16秒前
18秒前
卡皮巴拉完成签到 ,获得积分10
18秒前
18秒前
高骏伟发布了新的文献求助10
20秒前
英俊的铭应助pentayouth采纳,获得10
21秒前
王小西完成签到,获得积分10
21秒前
摩羯座小黄鸭完成签到,获得积分10
23秒前
科目三应助ll采纳,获得10
23秒前
随机子应助pentayouth采纳,获得10
25秒前
飞鸟完成签到,获得积分20
26秒前
29秒前
guard发布了新的文献求助10
32秒前
Balloon完成签到,获得积分10
33秒前
Singularity应助pentayouth采纳,获得10
34秒前
随机子应助经竺采纳,获得10
35秒前
yefeng发布了新的文献求助10
36秒前
axiao完成签到,获得积分10
36秒前
38秒前
搜集达人应助迪迦奥特曼采纳,获得10
38秒前
脑洞疼应助pentayouth采纳,获得10
39秒前
40秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816464
关于积分的说明 7912816
捐赠科研通 2476057
什么是DOI,文献DOI怎么找? 1318641
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388