Establishment and validation of a nomogram for suicidality in Chinese secondary school students

列线图 毒物控制 接收机工作特性 心理学 临床心理学 心理干预 医学 统计 精神科 数学 医疗急救 内科学
作者
Jie Yan,Yang Liu,Junjie Yu,Lipin Liao,Hong Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:330: 148-157 被引量:10
标识
DOI:10.1016/j.jad.2023.02.062
摘要

Accurately identifying high-risk of suicide groups and conducting appropriate interventions are important to reduce the risk of suicide. In this study, a nomogram technique was used to develop a predictive model for the suicidality of secondary school students based on four aspects: individual characteristics; health risk behaviors; family factors; and school factors.A total of 9338 secondary school students were surveyed using the stratified cluster sampling method, and subjects were randomly divided into a training set (n = 6366) and a validation set (n = 2728). In the former, the results of the lasso regression and random forest were combined, from which 7 optimal predictors of suicidality were determined. These were used to construct a nomogram. This nomogram's discrimination, calibration, clinical applicability, and generalization were assessed using receiver operating characteristic curves (ROC), calibration curves, decision curve analysis (DCA), and internal validation.Gender, depression symptoms, self-injury, running away from home, parents' relationship, relationship with father, and academic stress were found to be significant predictors of suicidality. The area under the curve (AUC) of the training set was 0.806, while that of the validation data was 0.792. The calibration curve of the nomogram was close to the diagonal, and the DCA showed the nomogram was clinically beneficial across a range of thresholds of 9-89 %.Causal inference is limited due to the cross-sectional design.An effective tool was constructed for predicting suicidality among secondary school students, which should help school healthcare personnel assess this information about students and also identify high-risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小学生采纳,获得10
1秒前
1秒前
ruirui发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
川川发布了新的文献求助10
5秒前
脑洞疼应助你真是那个啊采纳,获得10
5秒前
怕孤单的安蕾完成签到,获得积分10
6秒前
余晓雨完成签到,获得积分10
6秒前
王艳发布了新的文献求助10
8秒前
8秒前
HuY完成签到 ,获得积分10
8秒前
加贝发布了新的文献求助10
9秒前
F_echo发布了新的文献求助10
9秒前
Sir.夏季风完成签到,获得积分10
9秒前
10秒前
李照普发布了新的文献求助10
10秒前
10秒前
三脉紫莞关注了科研通微信公众号
11秒前
11秒前
照相机完成签到,获得积分10
12秒前
12秒前
12秒前
Annn完成签到 ,获得积分10
12秒前
13秒前
挽手余生发布了新的文献求助10
14秒前
15秒前
yszve完成签到,获得积分10
16秒前
17秒前
Cao完成签到 ,获得积分10
18秒前
18秒前
18秒前
张彩红完成签到,获得积分10
20秒前
20秒前
lixudong完成签到,获得积分10
21秒前
可爱的函函应助22222采纳,获得10
21秒前
赘婿应助叶素绿采纳,获得10
22秒前
自己哭哭完成签到 ,获得积分10
22秒前
123完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263186
求助须知:如何正确求助?哪些是违规求助? 4423851
关于积分的说明 13770951
捐赠科研通 4298749
什么是DOI,文献DOI怎么找? 2358664
邀请新用户注册赠送积分活动 1354904
关于科研通互助平台的介绍 1316172