Deep Reconstruction of Fe-NiMoO4·nH2O@NiOOH as Efficient Oxygen Evolution Electrocatalysts

过电位 电催化剂 析氧 电解质 催化作用 电化学 无机化学 电子转移 过渡金属 化学 分解水 氧化还原 贵金属 化学工程 材料科学 光化学 物理化学 电极 有机化学 工程类 光催化
作者
Zhaoyang Liu,Kun Wang,X. Tong,Fanlin Kong,Yali Cao
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:37 (4): 3023-3030 被引量:14
标识
DOI:10.1021/acs.energyfuels.2c03732
摘要

In electrocatalytic hydrolysis, the oxygen evolution reaction (OER) reaction involves a four-electron transfer process. The complex transfer process reduces the rate of hydrolysis. Therefore, the electrocatalyst with good OER performance is desirable for not only fundamental research but also further application. Transition-metal electrocatalysts, as one of the alternatives to noble-metal catalysts, have abundant reserves and unique d orbital electrons. In particular, transition-metal molybdates undergo dynamic reconstruction at oxidation potentials, and the hydroxyl oxides formed after reconstruction are the main active species for oxygen-related reactions. In this work, we prepared self-supported Fe-doped NiMoO4·nH2O@NiOOH electrocatalysts by hydrothermal reaction and electrochemical oxidation. Porous NiOOH was generated on the surface of NiMoO4·nH2O by electrooxidation, and Fe doping was realized in this process. The porous structure of the surface is conducive to the penetration of the electrolyte, which can accelerate the ion transport rate. The doping of Fe was used to modulate the electronic structure and improve the electrocatalytic activity. The overpotential was only 227 mV at 10 mA/cm2 in the 1 M KOH electrolyte. In addition, the electrocatalyst exhibited high stability at a current density of 20 mA/cm2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子完成签到,获得积分10
刚刚
bkagyin应助格格星采纳,获得10
1秒前
Youdge完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
yyf发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
Mian发布了新的文献求助10
3秒前
完美世界应助张静静采纳,获得10
3秒前
wu完成签到,获得积分10
3秒前
朴素的书琴完成签到,获得积分10
4秒前
dai完成签到,获得积分10
4秒前
务实大船发布了新的文献求助10
4秒前
四夕水窖完成签到,获得积分10
5秒前
FashionBoy应助曾经的臻采纳,获得10
5秒前
白白发布了新的文献求助10
5秒前
打打应助sternen采纳,获得30
5秒前
111完成签到,获得积分10
5秒前
加减乘除发布了新的文献求助10
6秒前
小憩发布了新的文献求助10
6秒前
ASZXDW完成签到,获得积分10
6秒前
飞翔的小舟完成签到,获得积分20
6秒前
csa1007完成签到,获得积分10
6秒前
纷纷故事完成签到,获得积分10
7秒前
7秒前
哲999发布了新的文献求助10
7秒前
麦苳完成签到,获得积分10
7秒前
8秒前
汉堡包应助JIE采纳,获得10
8秒前
伏地魔完成签到,获得积分10
8秒前
9秒前
yyf完成签到,获得积分10
9秒前
XWT完成签到,获得积分10
9秒前
虚安完成签到 ,获得积分10
9秒前
xqy完成签到 ,获得积分10
9秒前
啵乐乐发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740