Cross-lingual Entity Alignment based on Multi-dimensional Graph Convolutional Networks and Neighborhood Interaction Network

计算机科学 图形 互惠的 匹配(统计) 代表(政治) 实体链接 嵌入 人工智能 卷积神经网络 数据挖掘 图嵌入 特征学习 构造(python库) 理论计算机科学 模式识别(心理学) 数学 知识库 语言学 哲学 统计 政治 政治学 法学 程序设计语言
作者
Dianhui Mao,Min Zhao,Liangliang Zhao,Hao Sun,Ruixuan Li
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-2543523/v1
摘要

Abstract Learning the embedding representation of knowledge graphs through graph neural networks and measuring the similarity between the obtained entity embeddings is the conventional method for achieving entity alignment in knowledge graphs, but many methods do not take the entity neighborhood information and interaction properties between entities into account. To address the above problems, an entity alignment method based on multidimensional attention mechanism and neighborhood interaction, namely MGNI, is proposed. Firstly, Bi-LSTM is utilized to construct the initial feature representation of entities and relations. Next, similar attention (SA) and heterogeneous attention (HA) mechanisms are used to learn entity structure features and interaction features, and the entities are embedded into a unified spatial vector. Finally, entity alignment is performed by integrating the information of neighboring entity nodes. The method is validated using the DBP15K dataset, and the results reveal that all Hits@1 values are above 70%, Hits@10 values are above 91%, and Mean Reciprocal Rank (MRR) values are above 76%. Compared to other traditional entity alignment methods, the performance of each index of the proposed method is superior and now achieves the greatest level. Experiments including the deletion of each module in the proposed method demonstrate that each module has distinct impacts on entity alignment and that the proposed method can effectively increase the accuracy of entity matching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Candy发布了新的文献求助10
刚刚
毛豆应助无辜的安白采纳,获得10
1秒前
花菜炒肉发布了新的文献求助10
2秒前
姚大夫发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
5秒前
5秒前
草木人发布了新的社区帖子
6秒前
6秒前
快乐半山完成签到,获得积分20
6秒前
6秒前
7秒前
小茉完成签到,获得积分10
7秒前
WUWUWU应助HRIFFIN采纳,获得50
7秒前
trap发布了新的文献求助10
7秒前
张先生发布了新的文献求助10
9秒前
赵云发布了新的文献求助20
9秒前
ayj发布了新的文献求助10
10秒前
10秒前
10秒前
slb1319完成签到,获得积分10
11秒前
12秒前
Jim发布了新的文献求助30
13秒前
15秒前
15秒前
ayj完成签到,获得积分10
16秒前
17秒前
希望天下0贩的0应助ll采纳,获得10
17秒前
花菜炒肉发布了新的文献求助10
18秒前
slb1319发布了新的文献求助10
20秒前
张先生发布了新的文献求助10
23秒前
23秒前
28秒前
xiaozhejia发布了新的文献求助20
28秒前
上官老黑发布了新的文献求助10
29秒前
Owen应助orange9采纳,获得10
30秒前
31秒前
奶茶麻辣烫完成签到,获得积分10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307009
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8498950
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663478
邀请新用户注册赠送积分活动 648318