Molecular Modeling of Self-Assembling Peptides

计算机科学 脚手架 序列(生物学) 计算生物学 人工智能 生物信息学 化学 生物 生物化学 数据库
作者
Stephen J. Jones,Alberto Pérez
出处
期刊:ACS applied bio materials [American Chemical Society]
卷期号:7 (2): 543-552 被引量:3
标识
DOI:10.1021/acsabm.2c00921
摘要

Peptide epitopes mediate as many as 40% of protein–protein interactions and fulfill signaling, inhibition, and activation roles within the cell. Beyond protein recognition, some peptides can self- or coassemble into stable hydrogels, making them a readily available source of biomaterials. While these 3D assemblies are routinely characterized at the fiber level, there are missing atomistic details about the assembly scaffold. Such atomistic detail can be useful in the rational design of more stable scaffold structures and with improved accessibility to functional motifs. Computational approaches can in principle reduce the experimental cost of such an endeavor by predicting the assembly scaffold and identifying novel sequences that adopt said structure. Yet, inaccuracies in physical models and inefficient sampling have limited atomistic studies to short (two or three amino acid) peptides. Given recent developments in machine learning and advances in sampling strategies, we revisit the suitability of physical models for this task. We use the MELD (Modeling Employing Limited Data) approach to drive self-assembly in combination with generic data in cases where conventional MD is unsuccessful. Finally, despite recent developments in machine learning algorithms for protein structure and sequence predictions, we find the algorithms are not yet suited for studying the assembly of short peptides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
theverve发布了新的文献求助50
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
chenfu发布了新的文献求助10
1秒前
DDy10001发布了新的文献求助10
5秒前
6秒前
呜呜发布了新的文献求助10
6秒前
夏风完成签到 ,获得积分10
6秒前
6秒前
stayreal完成签到,获得积分10
6秒前
7秒前
省委一把手完成签到,获得积分10
7秒前
7秒前
淡然绝山发布了新的文献求助10
8秒前
DDy10001完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
Isabelxin_完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
传奇3应助整齐冬瓜采纳,获得10
10秒前
Jamie2发布了新的文献求助10
12秒前
Lucas应助SDNUDRUG采纳,获得10
12秒前
泯珉发布了新的文献求助30
13秒前
Isabelxin_发布了新的文献求助10
13秒前
14秒前
寒冷晓凡发布了新的文献求助10
14秒前
巴拉巴拉巴完成签到,获得积分10
14秒前
风花雪月发布了新的文献求助10
14秒前
Evelyn完成签到,获得积分10
14秒前
16秒前
16秒前
19秒前
leezz完成签到,获得积分10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961170
求助须知:如何正确求助?哪些是违规求助? 3507441
关于积分的说明 11136135
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790456
邀请新用户注册赠送积分活动 872439
科研通“疑难数据库(出版商)”最低求助积分说明 803152