亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating categorical counterfactuals via deep twin networks

反事实思维 反事实条件 因果推理 计算机科学 推论 范畴变量 因果模型 人工智能 机器学习 计量经济学 心理学 数学 统计 社会心理学
作者
Athanasios Vlontzos,Bernhard Kainz,Ciarán M. Gilligan-Lee
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (2): 159-168
标识
DOI:10.1038/s42256-023-00611-x
摘要

Counterfactual inference is a powerful tool, capable of solving challenging problems in high-profile sectors. To perform counterfactual inference, we require knowledge of the underlying causal mechanisms. However, causal mechanisms cannot be uniquely determined from observations and interventions alone. This raises the question of how to choose the causal mechanisms so that the resulting counterfactual inference is trustworthy in a given domain. This question has been addressed in causal models with binary variables, but for the case of categorical variables, it remains unanswered. We address this challenge by introducing for causal models with categorical variables the notion of counterfactual ordering, a principle positing desirable properties that causal mechanisms should possess and prove that it is equivalent to specific functional constraints on the causal mechanisms. To learn causal mechanisms satisfying these constraints, and perform counterfactual inference with them, we introduce deep twin networks. These are deep neural networks that, when trained, are capable of twin network counterfactual inference—an alternative to the abduction–action–prediction method. We empirically test our approach on diverse real-world and semisynthetic data from medicine, epidemiology and finance, reporting accurate estimation of counterfactual probabilities while demonstrating the issues that arise with counterfactual reasoning when counterfactual ordering is not enforced When learning a causal model from data, deriving counterfactual examples from the model can help to evaluate how plausible the mechanisms are and create hypotheses that can be tested with new data. Vlontzos and colleagues develop a deep learning-based method for answering counterfactual queries that can deal with categorical variables, rather than only binary ones, using the notion of ‘counterfactual ordering’.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助稳重的睿渊采纳,获得10
4秒前
5秒前
Xiaoxiao应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
Xiaoxiao应助科研通管家采纳,获得10
12秒前
20秒前
20秒前
25秒前
LuckyCookie发布了新的文献求助10
27秒前
所所应助LeezZZZ采纳,获得10
36秒前
38秒前
ktw完成签到,获得积分10
40秒前
40秒前
飞鱼发布了新的文献求助10
45秒前
稳重的睿渊完成签到 ,获得积分10
52秒前
木马上市完成签到,获得积分10
58秒前
闪闪羊完成签到 ,获得积分10
1分钟前
飞鱼完成签到,获得积分10
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助科研小白采纳,获得10
1分钟前
luxu发布了新的文献求助10
1分钟前
龙玄泽应助稳重的睿渊采纳,获得10
1分钟前
小蛇玩完成签到,获得积分20
1分钟前
无情的麦片完成签到 ,获得积分10
1分钟前
luxu完成签到,获得积分10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
包容完成签到,获得积分10
2分钟前
2分钟前
爆米花应助牛大力采纳,获得10
2分钟前
wll完成签到,获得积分10
2分钟前
2分钟前
VDC完成签到,获得积分0
2分钟前
FashionBoy应助wll采纳,获得10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390797
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803