亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating categorical counterfactuals via deep twin networks

反事实思维 反事实条件 因果推理 计算机科学 推论 范畴变量 因果模型 人工智能 机器学习 计量经济学 心理学 数学 统计 社会心理学
作者
Athanasios Vlontzos,Bernhard Kainz,Ciarán Lee
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (2): 159-168 被引量:4
标识
DOI:10.1038/s42256-023-00611-x
摘要

Counterfactual inference is a powerful tool, capable of solving challenging problems in high-profile sectors. To perform counterfactual inference, we require knowledge of the underlying causal mechanisms. However, causal mechanisms cannot be uniquely determined from observations and interventions alone. This raises the question of how to choose the causal mechanisms so that the resulting counterfactual inference is trustworthy in a given domain. This question has been addressed in causal models with binary variables, but for the case of categorical variables, it remains unanswered. We address this challenge by introducing for causal models with categorical variables the notion of counterfactual ordering, a principle positing desirable properties that causal mechanisms should possess and prove that it is equivalent to specific functional constraints on the causal mechanisms. To learn causal mechanisms satisfying these constraints, and perform counterfactual inference with them, we introduce deep twin networks. These are deep neural networks that, when trained, are capable of twin network counterfactual inference—an alternative to the abduction–action–prediction method. We empirically test our approach on diverse real-world and semisynthetic data from medicine, epidemiology and finance, reporting accurate estimation of counterfactual probabilities while demonstrating the issues that arise with counterfactual reasoning when counterfactual ordering is not enforced When learning a causal model from data, deriving counterfactual examples from the model can help to evaluate how plausible the mechanisms are and create hypotheses that can be tested with new data. Vlontzos and colleagues develop a deep learning-based method for answering counterfactual queries that can deal with categorical variables, rather than only binary ones, using the notion of ‘counterfactual ordering’.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助小飞采纳,获得10
1秒前
4秒前
搜集达人应助无风风采纳,获得10
7秒前
queen完成签到,获得积分10
8秒前
哪位发布了新的文献求助10
9秒前
在水一方完成签到 ,获得积分0
10秒前
桔梗完成签到 ,获得积分10
10秒前
11秒前
小黄是欧皇关注了科研通微信公众号
14秒前
自信的网络完成签到 ,获得积分10
15秒前
哪位完成签到,获得积分10
17秒前
噫吁嚱完成签到 ,获得积分10
17秒前
英姑应助天真的戾采纳,获得20
17秒前
所所应助小飞采纳,获得10
19秒前
小罗完成签到,获得积分20
20秒前
22秒前
23秒前
坚守完成签到 ,获得积分10
24秒前
27秒前
小鱼发布了新的文献求助10
27秒前
28秒前
科研通AI6应助世良采纳,获得10
29秒前
33秒前
万能图书馆应助小飞采纳,获得10
33秒前
灵巧凝莲发布了新的文献求助10
37秒前
张凡完成签到 ,获得积分10
39秒前
zjy完成签到,获得积分10
40秒前
nenoaowu发布了新的文献求助10
43秒前
李健应助刘生采纳,获得10
44秒前
传统的戎完成签到,获得积分10
46秒前
希望天下0贩的0应助小飞采纳,获得10
50秒前
科研通AI6应助ZHANG采纳,获得20
52秒前
52秒前
CipherSage应助nenoaowu采纳,获得10
55秒前
坚定的碧凡完成签到,获得积分10
59秒前
寒生完成签到,获得积分10
1分钟前
Fancy完成签到,获得积分10
1分钟前
开朗嘉熙完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助FXe采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650563
求助须知:如何正确求助?哪些是违规求助? 4781019
关于积分的说明 15052302
捐赠科研通 4809466
什么是DOI,文献DOI怎么找? 2572282
邀请新用户注册赠送积分活动 1528450
关于科研通互助平台的介绍 1487286