Estimating categorical counterfactuals via deep twin networks

反事实思维 反事实条件 因果推理 计算机科学 推论 范畴变量 因果模型 人工智能 机器学习 计量经济学 心理学 数学 统计 社会心理学
作者
Athanasios Vlontzos,Bernhard Kainz,Ciarán Lee
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (2): 159-168 被引量:4
标识
DOI:10.1038/s42256-023-00611-x
摘要

Counterfactual inference is a powerful tool, capable of solving challenging problems in high-profile sectors. To perform counterfactual inference, we require knowledge of the underlying causal mechanisms. However, causal mechanisms cannot be uniquely determined from observations and interventions alone. This raises the question of how to choose the causal mechanisms so that the resulting counterfactual inference is trustworthy in a given domain. This question has been addressed in causal models with binary variables, but for the case of categorical variables, it remains unanswered. We address this challenge by introducing for causal models with categorical variables the notion of counterfactual ordering, a principle positing desirable properties that causal mechanisms should possess and prove that it is equivalent to specific functional constraints on the causal mechanisms. To learn causal mechanisms satisfying these constraints, and perform counterfactual inference with them, we introduce deep twin networks. These are deep neural networks that, when trained, are capable of twin network counterfactual inference—an alternative to the abduction–action–prediction method. We empirically test our approach on diverse real-world and semisynthetic data from medicine, epidemiology and finance, reporting accurate estimation of counterfactual probabilities while demonstrating the issues that arise with counterfactual reasoning when counterfactual ordering is not enforced When learning a causal model from data, deriving counterfactual examples from the model can help to evaluate how plausible the mechanisms are and create hypotheses that can be tested with new data. Vlontzos and colleagues develop a deep learning-based method for answering counterfactual queries that can deal with categorical variables, rather than only binary ones, using the notion of ‘counterfactual ordering’.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助叶航采纳,获得10
1秒前
林士萍发布了新的文献求助10
1秒前
Owen应助冷酷傲易采纳,获得10
3秒前
时尚的老张完成签到 ,获得积分10
4秒前
5秒前
hannah喵完成签到,获得积分10
6秒前
7秒前
wobisheng发布了新的文献求助10
11秒前
11秒前
11秒前
Lucas应助景秋灵采纳,获得10
12秒前
叶航发布了新的文献求助10
14秒前
科研小子完成签到,获得积分10
14秒前
LYZ完成签到,获得积分10
14秒前
背后的飞飞完成签到,获得积分10
16秒前
达芬岐完成签到 ,获得积分10
17秒前
bkagyin应助ddddf采纳,获得30
17秒前
17秒前
18秒前
20秒前
22秒前
彭于晏应助英俊的如柏采纳,获得10
22秒前
22秒前
23秒前
poletar完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
xiaoxiao完成签到 ,获得积分10
24秒前
车干发布了新的文献求助10
26秒前
27秒前
张一一发布了新的文献求助10
28秒前
个性妙之完成签到,获得积分20
28秒前
搜集达人应助poletar采纳,获得10
29秒前
踏雪发布了新的文献求助10
29秒前
景秋灵发布了新的文献求助10
30秒前
甜美梦槐完成签到,获得积分10
32秒前
zxxxx完成签到,获得积分10
32秒前
科研通AI5应助小安采纳,获得10
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321