Estimating categorical counterfactuals via deep twin networks

反事实思维 反事实条件 因果推理 计算机科学 推论 范畴变量 因果模型 人工智能 机器学习 计量经济学 心理学 数学 统计 社会心理学
作者
Athanasios Vlontzos,Bernhard Kainz,Ciarán Lee
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (2): 159-168 被引量:4
标识
DOI:10.1038/s42256-023-00611-x
摘要

Counterfactual inference is a powerful tool, capable of solving challenging problems in high-profile sectors. To perform counterfactual inference, we require knowledge of the underlying causal mechanisms. However, causal mechanisms cannot be uniquely determined from observations and interventions alone. This raises the question of how to choose the causal mechanisms so that the resulting counterfactual inference is trustworthy in a given domain. This question has been addressed in causal models with binary variables, but for the case of categorical variables, it remains unanswered. We address this challenge by introducing for causal models with categorical variables the notion of counterfactual ordering, a principle positing desirable properties that causal mechanisms should possess and prove that it is equivalent to specific functional constraints on the causal mechanisms. To learn causal mechanisms satisfying these constraints, and perform counterfactual inference with them, we introduce deep twin networks. These are deep neural networks that, when trained, are capable of twin network counterfactual inference—an alternative to the abduction–action–prediction method. We empirically test our approach on diverse real-world and semisynthetic data from medicine, epidemiology and finance, reporting accurate estimation of counterfactual probabilities while demonstrating the issues that arise with counterfactual reasoning when counterfactual ordering is not enforced When learning a causal model from data, deriving counterfactual examples from the model can help to evaluate how plausible the mechanisms are and create hypotheses that can be tested with new data. Vlontzos and colleagues develop a deep learning-based method for answering counterfactual queries that can deal with categorical variables, rather than only binary ones, using the notion of ‘counterfactual ordering’.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
延文星发布了新的文献求助10
1秒前
单纯沁完成签到,获得积分10
1秒前
科研通AI6应助xixic采纳,获得10
2秒前
EKKO完成签到,获得积分10
3秒前
倩倩小跟班完成签到,获得积分10
3秒前
AllenFeng发布了新的文献求助10
4秒前
4秒前
小草发布了新的文献求助10
8秒前
风清扬发布了新的文献求助10
8秒前
9秒前
今后应助zz采纳,获得10
10秒前
10秒前
10秒前
tuanzi完成签到,获得积分10
11秒前
南闲竹发布了新的文献求助10
11秒前
Ran完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
shhoing应助玛琪玛小姐的狗采纳,获得10
12秒前
田様应助玛琪玛小姐的狗采纳,获得10
12秒前
13秒前
14秒前
14秒前
15秒前
ipeakkka发布了新的文献求助10
15秒前
风清扬发布了新的文献求助10
16秒前
16秒前
17秒前
思源应助向上向上向上采纳,获得10
18秒前
21秒前
专心搞科研完成签到 ,获得积分10
22秒前
zz发布了新的文献求助10
22秒前
WZX完成签到,获得积分10
22秒前
23秒前
赘婿应助李陈采纳,获得10
23秒前
wubinbin发布了新的文献求助10
24秒前
25秒前
神经外科杨医生完成签到,获得积分10
26秒前
现代萃完成签到,获得积分10
26秒前
天天快乐应助科科采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540496
求助须知:如何正确求助?哪些是违规求助? 4627087
关于积分的说明 14602207
捐赠科研通 4568067
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481989
关于科研通互助平台的介绍 1453623