Interpretable local flow attention for multi-step traffic flow prediction

计算机科学 卷积神经网络 特征(语言学) 流量(数学) 人工智能 流量(计算机网络) 维数(图论) 流量网络 机器学习 频道(广播) 机制(生物学) 数学优化 认识论 纯数学 哲学 几何学 语言学 计算机安全 数学 计算机网络
作者
Xu Huang,Bowen Zhang,Shanshan Feng,Yunming Ye,Xutao Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:161: 25-38 被引量:19
标识
DOI:10.1016/j.neunet.2023.01.023
摘要

Traffic flow prediction (TFP) has attracted increasing attention with the development of smart city. In the past few years, neural network-based methods have shown impressive performance for TFP. However, most of previous studies fail to explicitly and effectively model the relationship between inflows and outflows. Consequently, these methods are usually uninterpretable and inaccurate. In this paper, we propose an interpretable local flow attention (LFA) mechanism for TFP, which yields three advantages. (1) LFA is flow-aware. Different from existing works, which blend inflows and outflows in the channel dimension, we explicitly exploit the correlations between flows with a novel attention mechanism. (2) LFA is interpretable. It is formulated by the truisms of traffic flow, and the learned attention weights can well explain the flow correlations. (3) LFA is efficient. Instead of using global spatial attention as in previous studies, LFA leverages the local mode. The attention query is only performed on the local related regions. This not only reduces computational cost but also avoids false attention. Based on LFA, we further develop a novel spatiotemporal cell, named LFA-ConvLSTM (LFA-based convolutional long short-term memory), to capture the complex dynamics in traffic data. Specifically, LFA-ConvLSTM consists of three parts. (1) A ConvLSTM module is utilized to learn flow-specific features. (2) An LFA module accounts for modeling the correlations between flows. (3) A feature aggregation module fuses the above two to obtain a comprehensive feature. Extensive experiments on two real-world datasets show that our method achieves a better prediction performance. We improve the RMSE metric by 3.2%–4.6%, and the MAPE metric by 6.2%–6.7%. Our LFA-ConvLSTM is also almost 32% faster than global self-attention ConvLSTM in terms of prediction time. Furthermore, we also present some visual results to analyze the learned flow correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dt完成签到,获得积分20
1秒前
NeoWu发布了新的文献求助10
1秒前
1秒前
无误发布了新的文献求助10
2秒前
沉默傲芙发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
dt发布了新的文献求助10
5秒前
7秒前
塔图姆完成签到,获得积分10
7秒前
比白618完成签到,获得积分10
7秒前
小马驹发布了新的文献求助10
8秒前
8秒前
9秒前
我是老大应助云鲲采纳,获得10
10秒前
爆米花应助蟹蟹采纳,获得10
10秒前
单纯一笑完成签到,获得积分10
10秒前
甜甜芾完成签到,获得积分10
10秒前
谢嘻嘻嘻嘻完成签到,获得积分10
12秒前
12秒前
羊羊杨发布了新的文献求助10
12秒前
小温发布了新的文献求助10
13秒前
LIN发布了新的文献求助10
14秒前
16秒前
bio2236292872关注了科研通微信公众号
17秒前
17秒前
17秒前
闪闪雁兰发布了新的文献求助10
18秒前
机灵一兰发布了新的文献求助10
19秒前
酷波er应助子凯采纳,获得10
20秒前
是小曹啊发布了新的文献求助10
20秒前
Jasper应助高高亿先采纳,获得10
21秒前
21秒前
22秒前
LaTeXer应助羊羊杨采纳,获得50
22秒前
思源应助往返采纳,获得10
22秒前
23秒前
zhang值发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061