Interpretable local flow attention for multi-step traffic flow prediction

计算机科学 卷积神经网络 特征(语言学) 流量(数学) 人工智能 流量(计算机网络) 维数(图论) 流量网络 机器学习 频道(广播) 机制(生物学) 数学优化 认识论 纯数学 哲学 几何学 语言学 计算机安全 数学 计算机网络
作者
Xu Huang,Bowen Zhang,Shanshan Feng,Yunming Ye,Xutao Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:161: 25-38 被引量:19
标识
DOI:10.1016/j.neunet.2023.01.023
摘要

Traffic flow prediction (TFP) has attracted increasing attention with the development of smart city. In the past few years, neural network-based methods have shown impressive performance for TFP. However, most of previous studies fail to explicitly and effectively model the relationship between inflows and outflows. Consequently, these methods are usually uninterpretable and inaccurate. In this paper, we propose an interpretable local flow attention (LFA) mechanism for TFP, which yields three advantages. (1) LFA is flow-aware. Different from existing works, which blend inflows and outflows in the channel dimension, we explicitly exploit the correlations between flows with a novel attention mechanism. (2) LFA is interpretable. It is formulated by the truisms of traffic flow, and the learned attention weights can well explain the flow correlations. (3) LFA is efficient. Instead of using global spatial attention as in previous studies, LFA leverages the local mode. The attention query is only performed on the local related regions. This not only reduces computational cost but also avoids false attention. Based on LFA, we further develop a novel spatiotemporal cell, named LFA-ConvLSTM (LFA-based convolutional long short-term memory), to capture the complex dynamics in traffic data. Specifically, LFA-ConvLSTM consists of three parts. (1) A ConvLSTM module is utilized to learn flow-specific features. (2) An LFA module accounts for modeling the correlations between flows. (3) A feature aggregation module fuses the above two to obtain a comprehensive feature. Extensive experiments on two real-world datasets show that our method achieves a better prediction performance. We improve the RMSE metric by 3.2%–4.6%, and the MAPE metric by 6.2%–6.7%. Our LFA-ConvLSTM is also almost 32% faster than global self-attention ConvLSTM in terms of prediction time. Furthermore, we also present some visual results to analyze the learned flow correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
一二完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
111111完成签到,获得积分10
2秒前
2秒前
木心完成签到,获得积分10
2秒前
王婧萱萱萱完成签到 ,获得积分10
2秒前
西子阳发布了新的文献求助10
3秒前
西子阳发布了新的文献求助10
3秒前
迷人的语山完成签到,获得积分10
3秒前
西子阳发布了新的文献求助10
4秒前
大头发布了新的文献求助10
4秒前
5秒前
浮游应助要毁了我嘛采纳,获得10
5秒前
鄂海菡完成签到,获得积分0
5秒前
西子阳发布了新的文献求助10
5秒前
西子阳发布了新的文献求助10
5秒前
西子阳发布了新的文献求助10
5秒前
影子发布了新的文献求助10
5秒前
科目三应助111111采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
任浩发布了新的文献求助10
9秒前
FashionBoy应助陈词滥调采纳,获得10
9秒前
10秒前
dandan发布了新的文献求助10
12秒前
LuckyM完成签到 ,获得积分10
12秒前
扶摇完成签到 ,获得积分10
12秒前
疯子魔煞发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助150
13秒前
harri发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896470
求助须知:如何正确求助?哪些是违规求助? 4178142
关于积分的说明 12969952
捐赠科研通 3941381
什么是DOI,文献DOI怎么找? 2162251
邀请新用户注册赠送积分活动 1180748
关于科研通互助平台的介绍 1086255