Interpretable local flow attention for multi-step traffic flow prediction

计算机科学 卷积神经网络 特征(语言学) 流量(数学) 人工智能 流量(计算机网络) 维数(图论) 流量网络 机器学习 频道(广播) 机制(生物学) 数学优化 认识论 纯数学 哲学 几何学 语言学 计算机安全 数学 计算机网络
作者
Xu Huang,Bowen Zhang,Shanshan Feng,Yunming Ye,Xutao Li
出处
期刊:Neural Networks [Elsevier]
卷期号:161: 25-38 被引量:19
标识
DOI:10.1016/j.neunet.2023.01.023
摘要

Traffic flow prediction (TFP) has attracted increasing attention with the development of smart city. In the past few years, neural network-based methods have shown impressive performance for TFP. However, most of previous studies fail to explicitly and effectively model the relationship between inflows and outflows. Consequently, these methods are usually uninterpretable and inaccurate. In this paper, we propose an interpretable local flow attention (LFA) mechanism for TFP, which yields three advantages. (1) LFA is flow-aware. Different from existing works, which blend inflows and outflows in the channel dimension, we explicitly exploit the correlations between flows with a novel attention mechanism. (2) LFA is interpretable. It is formulated by the truisms of traffic flow, and the learned attention weights can well explain the flow correlations. (3) LFA is efficient. Instead of using global spatial attention as in previous studies, LFA leverages the local mode. The attention query is only performed on the local related regions. This not only reduces computational cost but also avoids false attention. Based on LFA, we further develop a novel spatiotemporal cell, named LFA-ConvLSTM (LFA-based convolutional long short-term memory), to capture the complex dynamics in traffic data. Specifically, LFA-ConvLSTM consists of three parts. (1) A ConvLSTM module is utilized to learn flow-specific features. (2) An LFA module accounts for modeling the correlations between flows. (3) A feature aggregation module fuses the above two to obtain a comprehensive feature. Extensive experiments on two real-world datasets show that our method achieves a better prediction performance. We improve the RMSE metric by 3.2%–4.6%, and the MAPE metric by 6.2%–6.7%. Our LFA-ConvLSTM is also almost 32% faster than global self-attention ConvLSTM in terms of prediction time. Furthermore, we also present some visual results to analyze the learned flow correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥爱糊糊完成签到,获得积分10
刚刚
科目三应助Jane采纳,获得10
刚刚
1秒前
LIN完成签到,获得积分10
1秒前
蒙蒙发布了新的文献求助10
1秒前
Leonasha完成签到 ,获得积分10
2秒前
CodeCraft应助qi-采纳,获得10
3秒前
zhouyou发布了新的文献求助10
3秒前
3秒前
受伤妙菱完成签到,获得积分20
4秒前
科研通AI2S应助yuchenovo采纳,获得10
4秒前
tiantian完成签到,获得积分10
5秒前
科研通AI2S应助wwnd采纳,获得10
6秒前
蒙蒙完成签到,获得积分10
6秒前
丘比特应助Becca采纳,获得10
7秒前
传奇3应助slz采纳,获得10
8秒前
8秒前
俭朴的鱼发布了新的文献求助10
8秒前
科研通AI2S应助木子青山采纳,获得10
8秒前
9秒前
矮小的柠檬完成签到,获得积分10
9秒前
笑点低的如凡完成签到,获得积分10
9秒前
ff不吃芹菜完成签到,获得积分10
9秒前
明理的幻悲完成签到,获得积分10
10秒前
光亮的灭绝应助xl采纳,获得10
11秒前
Cxyyyl完成签到 ,获得积分10
12秒前
12秒前
爱吃西红柿的eggplant完成签到 ,获得积分20
13秒前
信仰xy完成签到,获得积分10
13秒前
13秒前
13秒前
千风发布了新的文献求助10
14秒前
15秒前
ziyue应助科研1采纳,获得10
15秒前
15秒前
隐形曼青应助机灵的千琴采纳,获得10
16秒前
科研cc发布了新的文献求助10
17秒前
ivy发布了新的文献求助10
19秒前
20秒前
王灿灿发布了新的文献求助10
20秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206140
求助须知:如何正确求助?哪些是违规求助? 2855558
关于积分的说明 8100014
捐赠科研通 2520572
什么是DOI,文献DOI怎么找? 1353532
科研通“疑难数据库(出版商)”最低求助积分说明 641780
邀请新用户注册赠送积分活动 612869