Interpretable local flow attention for multi-step traffic flow prediction

计算机科学 卷积神经网络 特征(语言学) 流量(数学) 人工智能 流量(计算机网络) 维数(图论) 流量网络 机器学习 频道(广播) 机制(生物学) 数学优化 哲学 语言学 几何学 数学 计算机安全 纯数学 计算机网络 认识论
作者
Xu Huang,Bowen Zhang,Shanshan Feng,Yunming Ye,Xutao Li
出处
期刊:Neural Networks [Elsevier]
卷期号:161: 25-38 被引量:19
标识
DOI:10.1016/j.neunet.2023.01.023
摘要

Traffic flow prediction (TFP) has attracted increasing attention with the development of smart city. In the past few years, neural network-based methods have shown impressive performance for TFP. However, most of previous studies fail to explicitly and effectively model the relationship between inflows and outflows. Consequently, these methods are usually uninterpretable and inaccurate. In this paper, we propose an interpretable local flow attention (LFA) mechanism for TFP, which yields three advantages. (1) LFA is flow-aware. Different from existing works, which blend inflows and outflows in the channel dimension, we explicitly exploit the correlations between flows with a novel attention mechanism. (2) LFA is interpretable. It is formulated by the truisms of traffic flow, and the learned attention weights can well explain the flow correlations. (3) LFA is efficient. Instead of using global spatial attention as in previous studies, LFA leverages the local mode. The attention query is only performed on the local related regions. This not only reduces computational cost but also avoids false attention. Based on LFA, we further develop a novel spatiotemporal cell, named LFA-ConvLSTM (LFA-based convolutional long short-term memory), to capture the complex dynamics in traffic data. Specifically, LFA-ConvLSTM consists of three parts. (1) A ConvLSTM module is utilized to learn flow-specific features. (2) An LFA module accounts for modeling the correlations between flows. (3) A feature aggregation module fuses the above two to obtain a comprehensive feature. Extensive experiments on two real-world datasets show that our method achieves a better prediction performance. We improve the RMSE metric by 3.2%–4.6%, and the MAPE metric by 6.2%–6.7%. Our LFA-ConvLSTM is also almost 32% faster than global self-attention ConvLSTM in terms of prediction time. Furthermore, we also present some visual results to analyze the learned flow correlations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQQ完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
2秒前
斯文败类应助WEAWEA采纳,获得10
3秒前
3秒前
4秒前
科研通AI2S应助如意的冰双采纳,获得10
5秒前
能干的问晴完成签到,获得积分10
6秒前
miemie66发布了新的文献求助10
6秒前
香芋完成签到 ,获得积分10
6秒前
nihao发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
韩野发布了新的文献求助10
11秒前
山海完成签到,获得积分10
11秒前
penpen发布了新的文献求助10
11秒前
12秒前
张芃尧完成签到,获得积分20
13秒前
天天快乐应助CHEN采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
SciGPT应助hearz采纳,获得10
15秒前
15秒前
孙元应助zzz采纳,获得10
16秒前
16秒前
元谷雪发布了新的文献求助10
17秒前
英姑应助Vizz采纳,获得10
17秒前
起个名真难完成签到,获得积分10
17秒前
幻影完成签到 ,获得积分10
17秒前
ayintree完成签到,获得积分10
18秒前
18秒前
小蘑菇应助mm采纳,获得10
18秒前
Nan发布了新的文献求助200
18秒前
20秒前
打工人发布了新的文献求助10
20秒前
张芃尧发布了新的文献求助10
21秒前
Franco发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233