Interpretable local flow attention for multi-step traffic flow prediction

计算机科学 卷积神经网络 特征(语言学) 流量(数学) 人工智能 流量(计算机网络) 维数(图论) 流量网络 机器学习 频道(广播) 机制(生物学) 数学优化 哲学 语言学 几何学 数学 计算机安全 纯数学 计算机网络 认识论
作者
Xu Huang,Bowen Zhang,Shanshan Feng,Yunming Ye,Xutao Li
出处
期刊:Neural Networks [Elsevier]
卷期号:161: 25-38 被引量:19
标识
DOI:10.1016/j.neunet.2023.01.023
摘要

Traffic flow prediction (TFP) has attracted increasing attention with the development of smart city. In the past few years, neural network-based methods have shown impressive performance for TFP. However, most of previous studies fail to explicitly and effectively model the relationship between inflows and outflows. Consequently, these methods are usually uninterpretable and inaccurate. In this paper, we propose an interpretable local flow attention (LFA) mechanism for TFP, which yields three advantages. (1) LFA is flow-aware. Different from existing works, which blend inflows and outflows in the channel dimension, we explicitly exploit the correlations between flows with a novel attention mechanism. (2) LFA is interpretable. It is formulated by the truisms of traffic flow, and the learned attention weights can well explain the flow correlations. (3) LFA is efficient. Instead of using global spatial attention as in previous studies, LFA leverages the local mode. The attention query is only performed on the local related regions. This not only reduces computational cost but also avoids false attention. Based on LFA, we further develop a novel spatiotemporal cell, named LFA-ConvLSTM (LFA-based convolutional long short-term memory), to capture the complex dynamics in traffic data. Specifically, LFA-ConvLSTM consists of three parts. (1) A ConvLSTM module is utilized to learn flow-specific features. (2) An LFA module accounts for modeling the correlations between flows. (3) A feature aggregation module fuses the above two to obtain a comprehensive feature. Extensive experiments on two real-world datasets show that our method achieves a better prediction performance. We improve the RMSE metric by 3.2%–4.6%, and the MAPE metric by 6.2%–6.7%. Our LFA-ConvLSTM is also almost 32% faster than global self-attention ConvLSTM in terms of prediction time. Furthermore, we also present some visual results to analyze the learned flow correlations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳之恩泽及万物完成签到,获得积分10
1秒前
2秒前
韩hh发布了新的文献求助10
2秒前
领导范儿应助Duck采纳,获得10
3秒前
幸运在我完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
英俊的铭应助jhfvkbjk采纳,获得10
6秒前
曹骏轩发布了新的文献求助10
6秒前
王w发布了新的文献求助10
6秒前
插线板发布了新的文献求助30
6秒前
sherry221完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
如意代双完成签到 ,获得积分10
7秒前
7秒前
accept白发布了新的文献求助10
8秒前
维摩关注了科研通微信公众号
8秒前
8秒前
9秒前
丰富青文完成签到,获得积分10
9秒前
优美紫槐发布了新的文献求助10
10秒前
10秒前
田甜甜完成签到,获得积分10
10秒前
李健的小迷弟应助韩hh采纳,获得10
10秒前
苹果雁易完成签到,获得积分10
11秒前
Aero发布了新的文献求助10
11秒前
12秒前
Rainbow完成签到,获得积分10
12秒前
小二郎应助曹骏轩采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
15秒前
陈chq完成签到,获得积分10
15秒前
15秒前
lllsssqqq发布了新的文献求助10
15秒前
15秒前
cai完成签到,获得积分20
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610491
求助须知:如何正确求助?哪些是违规求助? 4694995
关于积分的说明 14885286
捐赠科研通 4722572
什么是DOI,文献DOI怎么找? 2545155
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473063