亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applying an interpretive machine learning algorithm to predict in-hospital mortality in elderly asian patients with acute coronary syndrome (ACS)

医学 急性冠脉综合征 算法 队列 机器学习 弗雷明翰风险评分 内科学 曲线下面积 疾病 心肌梗塞 计算机科学
作者
S Kasim,Sri Nurestri Abd Malek,K S Ibrahim,D S Kumar
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_1) 被引量:1
标识
DOI:10.1093/eurheartj/ehac779.125
摘要

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Mosti TED1 grant Background No study has used interpretative Machine Learning (ML) algorithms to predict in-hospital mortality for the Asian elderly (65+). TIMI predicts mortality for STEMI and NSTEMI using two different scores. It was based on the Western cohort with limited Asian data. Purpose Develop a single mortality risk scoring system for STEMI and NSTEMI patients and use interpretative ML to identify and analyse risk factors in elderly Asian patients with ACS. Methods The National Cardiovascular Disease Database registry identified 4305 elderly. 70% of the data was used to develop algorithms and 30% for validation. Fifty-four parameters were considered, including demographics, cardiovascular risk, medications, and clinical variables. A sequential backward elimination (SBE) algorithm was used to identify variables associated to elderly mortality. XGBoost classification algorithm and SHapley Additive exPlanation (SHAP) were used to understand mortality impact. The SHAP value of each variable represents its impact on model output (mortality). The main performance metric was area under the curve (AUC). The model was validated using a validation dataset and compared to STEMI and NSTEMI for TIMI. Results XGBoost's validation dataset performance using the top 12 predictors from SBE for; STEMI (AUC = 0.822, 95% CI: 0.775-0.868, Accuracy: 0.875, Sensitivity: 0.164, Specificity: 0.966) and NSTEMI (AUC = 0.853, 95% CI: 0.802-0.904, Accuracy: 0.950, Sensitivity: 0.154, Specificity: 0.997). XGBoost's validation dataset performance using the eight emergency predictors selected from the top twelve predictors for; STEMI (AUC = 0.813, 95% CI: 0.766-0.861, Accuracy: 0.868, Sensitivity: 0.194, Specificity 0.954) and NSTEMI (AUC = 0.867, 95% CI: 0.812-0.921, Accuracy: 0.941, Sensitivity: 0.333, Specificity: 0.978). Both models outperformed TIMI score (STEMI AUC = 0.702, NSTEMI AUC = 0.524). The predictors were chosen and ranked in ascending order using the SHAP values (Figure 1). On the y-axis, the variable names are displayed in ascending order of importance and the colour represents the feature's value, ranging from low to high, allowing comprehension of the distribution of SHAP values for each feature. The x-axis displays the SHAP values. Eight out of the twelve predictors were identified to be emergency variables and was ranked according to SHAP values (Figure 2). When compared to TIMI, cardiac catheterization, percutaneous coronary intervention, and pharmacotherapy drugs are chosen as predictors that improve mortality prediction in STEMI and NSTEMI elderly patients. High killip class and age are linked to a poorer ACS patient survival rate, but cardiac catheterization and use of pharmacotherapy drugs improve patient mortality. Conclusions A single algorithm can better classify elderly ASIAN patients with ACS than TIMI, which requires two scores. The use of interpretative algorithms aids in the understanding of ACS elderly hospital mortality factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
小助应助嘟嘟嘟嘟采纳,获得10
3秒前
万能图书馆应助common1988采纳,获得20
4秒前
hqh完成签到,获得积分10
4秒前
悦耳冬萱发布了新的文献求助10
5秒前
7秒前
程风破浪发布了新的文献求助10
8秒前
11秒前
11秒前
12秒前
惊奇先生1发布了新的文献求助10
15秒前
Sunny完成签到 ,获得积分10
15秒前
Rezeal发布了新的文献求助10
16秒前
Orange应助白华苍松采纳,获得10
16秒前
zgx完成签到 ,获得积分10
19秒前
21秒前
古月完成签到,获得积分10
24秒前
万能图书馆应助李发财采纳,获得10
26秒前
下下潜完成签到 ,获得积分10
31秒前
ronnie147完成签到 ,获得积分10
35秒前
42秒前
46秒前
ddddduan完成签到 ,获得积分10
47秒前
打打应助高贵石头采纳,获得10
47秒前
50秒前
53秒前
54秒前
傲娇而又骄傲完成签到 ,获得积分10
58秒前
59秒前
TiY完成签到 ,获得积分10
1分钟前
科研通AI5应助程风破浪采纳,获得10
1分钟前
三个土拔鼠完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
陈芒果啊完成签到 ,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
一一发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390729
捐赠科研通 2831033
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803