空气污染
空气污染物
表观遗传学
随机对照试验
生物
计算生物学
医学
基因
遗传学
内科学
生态学
作者
Xihao Du,Yixuan Jiang,Qingli Zhang,Xinlei Zhu,Yang Zhang,Cong Liu,Yue Niu,Jing Cai,Haidong Kan,Renjie Chen
标识
DOI:10.1021/acs.est.2c05956
摘要
Changes in human genome-wide long noncoding RNAs (lncRNAs) associated with air pollution are unknown. This study aimed to investigate the effect of air pollution on human exosomal lncRNAs. A randomized, crossover trial was conducted among 35 healthy adults. Participants were allocated to 4 h exposure in road (high air pollution) and park (low air pollution) sessions in random order with a 2 week washout period. RNA sequencing was performed to measure lncRNAs. Differential lncRNAs were identified using a linear mixed-effect model. Mean concentrations of air pollutants such as ultrafine particles (UFP), black carbon (BC), carbon monoxide (CO), and nitrogen dioxide (NO2) were 2–3 times higher in the road than those in the park. Fifty-five lncRNAs [false discovery rate (FDR) < 0.05] including lncRNA NORAD, MALAT1, and H19 were changed in response to air pollution exposure. We found that 54 lncRNAs were associated with CO, 49 lncRNAs with UFP, 49 lncRNAs with BC, 48 lncRNAs with NO2, and 4 lncRNAs with PM2.5 (FDR < 0.05). These differential lncRNAs participated in dozens of pathways including cardiovascular signaling, epithelial cell proliferation, inflammation, and transforming growth factor. This trial for the first time profiled changes of human exosomal lncRNAs following air pollution. Our findings revealed multiple biological processes moderated by lncRNAs and provided epigenetic insights into cardiovascular effects of air pollution.
科研通智能强力驱动
Strongly Powered by AbleSci AI