计算机科学
可穿戴计算机
信道状态信息
实时计算
信号(编程语言)
无线传感器网络
副载波
无线
频道(广播)
嵌入式系统
电信
计算机网络
正交频分复用
程序设计语言
作者
Zhengxin Guo,Wenyang Yuan,Linqing Gui,Biyun Sheng,Fu Xiao
出处
期刊:ACM Transactions on Sensor Networks
[Association for Computing Machinery]
日期:2023-02-17
卷期号:19 (4): 1-18
被引量:7
摘要
Respiration is a vital indicator of the state of the human body. Monitoring human respiration enables the realization of a variety of intelligent applications, including smart medical and sleep monitoring. Traditional methods that are dependent upon wearable devices are more costly and inconvenient for users. Recent studies have evidenced that low-cost commodity WiFi devices can be used to accomplish contactless respiration monitoring. In this article, we present BreatheBand, a fine-grained and robust respiration monitoring system based on commercial WiFi signals. We first remove the time-varying phase shift in the channel state information (CSI) by developing the Multi-antenna CSI–Subpopulation Genetic algorithm. Then we separate human respiratory components from WiFi signals by employing subcarrier selection and Independent Component Analysis. Next, applying a Mixed Cluster Gaussian–Hidden Markov Model, we generate a respiration signal resembling that of wearable devices. Finally, we integrate the BreatheBand system into commercial WiFi infrastructure. The results show that the BreatheBand’s respiration signal is remarkably identical to the signal collected by the wearable device in various scenarios. In particular, the mean absolute error of the BreatheBand’s respiration rate is approximately 0.1 bpm, outperforming state-of-the-art algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI