A win ratio approach for comparing crossing survival curves in clinical trials

危险系数 统计 对数秩检验 比例危险模型 数学 生存分析 危害 无效假设 事件(粒子物理) 计量经济学 I类和II类错误 蒙特卡罗方法 价值(数学) 置信区间 物理 量子力学 有机化学 化学
作者
Sirui Zheng,Duolao Wang,Junshan Qiu,Tao Chen,Margaret Gamalo
出处
期刊:Journal of Biopharmaceutical Statistics [Taylor & Francis]
卷期号:33 (4): 488-501 被引量:4
标识
DOI:10.1080/10543406.2023.2170393
摘要

Many clinical trials include time-to-event or survival data as an outcome. To compare two survival distributions, the log-rank test is often used to produce a P-value for a statistical test of the null hypothesis that the two survival curves are identical. However, such a P-value does not provide the magnitude of the difference between the curves regarding the treatment effect. As a result, the P-value is often accompanied by an estimate of the hazard ratio from the proportional hazards model or Cox model as a measurement of treatment difference. However, one of the most important assumptions for Cox model is that the hazard functions for the two treatment groups are proportional. When the hazard curves cross, the Cox model could lead to misleading results and the log-rank test could also perform poorly. To address the problem of crossing curves in survival analysis, we propose the use of the win ratio method put forward by Pocock et al. as an estimand for analysing such data. The subjects in the test and control treatment groups are formed into all possible pairs. For each pair, the test treatment subject is labelled a winner or a loser if it is known who had the event of interest such as death. The win ratio is the total number of winners divided by the total number of losers and its standard error can be estimated using Bebu and Lachin method. Using real trial datasets and Monte Carlo simulations, this study investigates the power and type I error and compares the win ratio method with the log-rank test and Cox model under various scenarios of crossing survival curves with different censoring rates and distribution parameters. The results show that the win ratio method has similar power as the log-rank test and Cox model to detect the treatment difference when the assumption of proportional hazards holds true, and that the win ratio method outperforms log-rank test and Cox model in terms of power to detect the treatment difference when the survival curves cross.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9420完成签到,获得积分10
刚刚
隐形曼青应助hunajx采纳,获得10
刚刚
sasasas发布了新的文献求助10
1秒前
HN洪完成签到,获得积分10
1秒前
莫言发布了新的文献求助10
1秒前
shuoshuo发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
无曲应助科研通管家采纳,获得20
2秒前
2秒前
酷酷问梅完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
野狗拉丽发布了新的文献求助10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
Koalas应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Lilith应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
反杀闰土的猹完成签到 ,获得积分10
4秒前
5秒前
6秒前
酷波er应助qinkoko采纳,获得10
6秒前
ybigwhite应助猛犸象冲冲冲采纳,获得20
7秒前
完美世界应助坚持坚持采纳,获得10
7秒前
热心冷亦完成签到,获得积分10
8秒前
8秒前
海带拳大力士完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123189
求助须知:如何正确求助?哪些是违规求助? 4327690
关于积分的说明 13485306
捐赠科研通 4161935
什么是DOI,文献DOI怎么找? 2281094
邀请新用户注册赠送积分活动 1282577
关于科研通互助平台的介绍 1221658