A win ratio approach for comparing crossing survival curves in clinical trials

危险系数 统计 对数秩检验 比例危险模型 数学 生存分析 危害 无效假设 事件(粒子物理) 计量经济学 I类和II类错误 蒙特卡罗方法 价值(数学) 置信区间 物理 量子力学 有机化学 化学
作者
Sirui Zheng,Duolao Wang,Junshan Qiu,Tao Chen,Margaret Gamalo
出处
期刊:Journal of Biopharmaceutical Statistics [Taylor & Francis]
卷期号:33 (4): 488-501 被引量:4
标识
DOI:10.1080/10543406.2023.2170393
摘要

Many clinical trials include time-to-event or survival data as an outcome. To compare two survival distributions, the log-rank test is often used to produce a P-value for a statistical test of the null hypothesis that the two survival curves are identical. However, such a P-value does not provide the magnitude of the difference between the curves regarding the treatment effect. As a result, the P-value is often accompanied by an estimate of the hazard ratio from the proportional hazards model or Cox model as a measurement of treatment difference. However, one of the most important assumptions for Cox model is that the hazard functions for the two treatment groups are proportional. When the hazard curves cross, the Cox model could lead to misleading results and the log-rank test could also perform poorly. To address the problem of crossing curves in survival analysis, we propose the use of the win ratio method put forward by Pocock et al. as an estimand for analysing such data. The subjects in the test and control treatment groups are formed into all possible pairs. For each pair, the test treatment subject is labelled a winner or a loser if it is known who had the event of interest such as death. The win ratio is the total number of winners divided by the total number of losers and its standard error can be estimated using Bebu and Lachin method. Using real trial datasets and Monte Carlo simulations, this study investigates the power and type I error and compares the win ratio method with the log-rank test and Cox model under various scenarios of crossing survival curves with different censoring rates and distribution parameters. The results show that the win ratio method has similar power as the log-rank test and Cox model to detect the treatment difference when the assumption of proportional hazards holds true, and that the win ratio method outperforms log-rank test and Cox model in terms of power to detect the treatment difference when the survival curves cross.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小虎应助春天先生采纳,获得10
刚刚
susan完成签到 ,获得积分10
刚刚
李爱国应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
hh完成签到,获得积分10
3秒前
伶俐的冰之完成签到,获得积分10
5秒前
两只老虎和兔子完成签到,获得积分10
6秒前
Novice6354完成签到 ,获得积分10
7秒前
一直发布了新的文献求助10
8秒前
8秒前
10秒前
英姑应助111111采纳,获得10
12秒前
小孙孙完成签到 ,获得积分10
12秒前
科研三井泽完成签到,获得积分10
12秒前
慕青应助牛牛眉目采纳,获得10
13秒前
Kiling发布了新的文献求助10
14秒前
14秒前
shencan发布了新的文献求助10
15秒前
17秒前
小猫发布了新的文献求助10
18秒前
19秒前
典雅大白菜真实的钥匙完成签到,获得积分10
21秒前
根根发布了新的文献求助10
22秒前
23秒前
九月完成签到,获得积分10
25秒前
111111发布了新的文献求助10
25秒前
Jasper应助nenoaowu采纳,获得10
25秒前
26秒前
ivyyyyyy完成签到,获得积分10
27秒前
华青ww发布了新的文献求助10
29秒前
善学以致用应助任性雁风采纳,获得10
29秒前
30秒前
muuch发布了新的文献求助10
31秒前
CipherSage应助根根采纳,获得10
32秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361