Faster Metallic Surface Defect Detection Using Deep Learning with燙hannel燬huffling

深度学习 人工智能 曲面(拓扑) 材料科学 计算机科学 数学 几何学
作者
Siddiqui Muhammad Yasir,Hyunsik Ahn
出处
期刊:Computers, materials & continua 卷期号:75 (1): 1847-1861 被引量:3
标识
DOI:10.32604/cmc.2023.035698
摘要

Deep learning has been constantly improving in recent years and a significant number of researchers have devoted themselves to the research of defect detection algorithms. Detection and recognition of small and complex targets is still a problem that needs to be solved. The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces. During steel strip production mechanical forces and environmental factors cause surface defects of the steel strip. Therefore the detection of such defects is key to the production of high-quality products. Moreover surface defects of the steel strip cause great economic losses to the high-tech industry. So far few studies have explored methods of identifying the defects and most of the currently available algorithms are not sufficiently effective. Therefore this study presents an improved real-time metallic surface defect detection model based on You Only Look Once (YOLOv5) specially designed for small networks. For the smaller features of the target the conventional part is replaced with a depth-wise convolution and channel shuffle mechanism. Then assigning weights to Feature Pyramid Networks (FPN) output features and fusing them increases feature propagation and the networks characterization ability. The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time. The precision of the proposed model achieved by @mAP is 77.5% on the Northeastern University Dataset NEU-DET and 70.18% on the GC10-DET datasets
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
coconut完成签到 ,获得积分10
1秒前
1秒前
脑洞疼应助Ll采纳,获得10
1秒前
1秒前
2秒前
Anne完成签到,获得积分10
2秒前
老迟到的凝丝完成签到,获得积分10
2秒前
金鸡奖发布了新的文献求助10
2秒前
邓邓邓妮妮子完成签到,获得积分10
2秒前
哇哈哈发布了新的文献求助10
2秒前
2秒前
andyxrz发布了新的文献求助30
3秒前
酒尚温完成签到,获得积分10
3秒前
3秒前
4秒前
Paul完成签到,获得积分10
4秒前
冰冰完成签到 ,获得积分10
4秒前
木木发布了新的文献求助10
4秒前
5秒前
涛浪完成签到,获得积分10
5秒前
上官若男应助yzy采纳,获得10
6秒前
会飞的小白完成签到,获得积分10
6秒前
6秒前
8564523发布了新的文献求助10
6秒前
珈蓝完成签到,获得积分10
7秒前
吉祥完成签到,获得积分0
7秒前
7秒前
8秒前
开心尔云完成签到,获得积分10
8秒前
在水一方应助羽言采纳,获得10
8秒前
8秒前
HZW发布了新的文献求助20
9秒前
不厌关注了科研通微信公众号
9秒前
labxgr完成签到,获得积分10
9秒前
9秒前
9秒前
吱嗷赵完成签到,获得积分20
9秒前
MADKAI发布了新的文献求助20
10秒前
木木完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672