Faster Metallic Surface Defect Detection Using Deep Learning with燙hannel燬huffling

深度学习 人工智能 曲面(拓扑) 材料科学 计算机科学 数学 几何学
作者
Siddiqui Muhammad Yasir,Hyunsik Ahn
出处
期刊:Computers, materials & continua 卷期号:75 (1): 1847-1861 被引量:3
标识
DOI:10.32604/cmc.2023.035698
摘要

Deep learning has been constantly improving in recent years and a significant number of researchers have devoted themselves to the research of defect detection algorithms. Detection and recognition of small and complex targets is still a problem that needs to be solved. The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces. During steel strip production mechanical forces and environmental factors cause surface defects of the steel strip. Therefore the detection of such defects is key to the production of high-quality products. Moreover surface defects of the steel strip cause great economic losses to the high-tech industry. So far few studies have explored methods of identifying the defects and most of the currently available algorithms are not sufficiently effective. Therefore this study presents an improved real-time metallic surface defect detection model based on You Only Look Once (YOLOv5) specially designed for small networks. For the smaller features of the target the conventional part is replaced with a depth-wise convolution and channel shuffle mechanism. Then assigning weights to Feature Pyramid Networks (FPN) output features and fusing them increases feature propagation and the networks characterization ability. The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time. The precision of the proposed model achieved by @mAP is 77.5% on the Northeastern University Dataset NEU-DET and 70.18% on the GC10-DET datasets
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助gecheng采纳,获得10
刚刚
1秒前
辛勤的无敌完成签到,获得积分10
1秒前
1秒前
1秒前
小学生库里完成签到,获得积分10
1秒前
钱大大完成签到,获得积分10
1秒前
2秒前
3秒前
TT发布了新的文献求助10
3秒前
毛通完成签到,获得积分10
3秒前
pl脆脆发布了新的文献求助10
4秒前
张吉吉完成签到 ,获得积分10
4秒前
5秒前
5秒前
丘比特应助yg采纳,获得10
5秒前
echo发布了新的文献求助10
6秒前
6秒前
小杜发布了新的文献求助10
7秒前
7秒前
7秒前
chcmuer发布了新的文献求助30
7秒前
8秒前
科研通AI2S应助BinSir采纳,获得10
9秒前
pinwheel发布了新的文献求助10
9秒前
帆帆牛发布了新的文献求助10
10秒前
阚曦发布了新的文献求助10
10秒前
10秒前
SYLH应助坦率不凡采纳,获得10
10秒前
HJX发布了新的文献求助10
10秒前
11秒前
TT完成签到,获得积分10
11秒前
yyang完成签到,获得积分10
11秒前
11秒前
yaoqi完成签到,获得积分10
13秒前
14秒前
ly发布了新的文献求助10
15秒前
15秒前
Lyra完成签到,获得积分10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451