Faster Metallic Surface Defect Detection Using Deep Learning with燙hannel燬huffling

深度学习 人工智能 曲面(拓扑) 材料科学 计算机科学 数学 几何学
作者
Siddiqui Muhammad Yasir,Hyunsik Ahn
出处
期刊:Computers, materials & continua 卷期号:75 (1): 1847-1861 被引量:3
标识
DOI:10.32604/cmc.2023.035698
摘要

Deep learning has been constantly improving in recent years and a significant number of researchers have devoted themselves to the research of defect detection algorithms. Detection and recognition of small and complex targets is still a problem that needs to be solved. The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces. During steel strip production mechanical forces and environmental factors cause surface defects of the steel strip. Therefore the detection of such defects is key to the production of high-quality products. Moreover surface defects of the steel strip cause great economic losses to the high-tech industry. So far few studies have explored methods of identifying the defects and most of the currently available algorithms are not sufficiently effective. Therefore this study presents an improved real-time metallic surface defect detection model based on You Only Look Once (YOLOv5) specially designed for small networks. For the smaller features of the target the conventional part is replaced with a depth-wise convolution and channel shuffle mechanism. Then assigning weights to Feature Pyramid Networks (FPN) output features and fusing them increases feature propagation and the networks characterization ability. The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time. The precision of the proposed model achieved by @mAP is 77.5% on the Northeastern University Dataset NEU-DET and 70.18% on the GC10-DET datasets
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是站长才怪应助乐道采纳,获得10
刚刚
刚刚
二硫碘化钾完成签到,获得积分10
1秒前
情怀应助胖仔采纳,获得10
1秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
ONESTUD应助科研通管家采纳,获得30
2秒前
Akim应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
笨笨石头应助科研通管家采纳,获得20
3秒前
跳跃的乐萱完成签到 ,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得30
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得30
3秒前
踏雪完成签到,获得积分10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
煤炭不甜应助科研通管家采纳,获得20
3秒前
夜白应助科研通管家采纳,获得10
3秒前
彳亍1117应助科研通管家采纳,获得10
3秒前
mydarling应助科研通管家采纳,获得10
4秒前
4秒前
guorui应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
夜白应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265978
求助须知:如何正确求助?哪些是违规求助? 2905826
关于积分的说明 8335519
捐赠科研通 2576203
什么是DOI,文献DOI怎么找? 1400372
科研通“疑难数据库(出版商)”最低求助积分说明 654755
邀请新用户注册赠送积分活动 633556