亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Faster Metallic Surface Defect Detection Using Deep Learning with燙hannel燬huffling

深度学习 人工智能 曲面(拓扑) 材料科学 计算机科学 数学 几何学
作者
Siddiqui Muhammad Yasir,Hyunsik Ahn
出处
期刊:Computers, materials & continua 卷期号:75 (1): 1847-1861 被引量:3
标识
DOI:10.32604/cmc.2023.035698
摘要

Deep learning has been constantly improving in recent years and a significant number of researchers have devoted themselves to the research of defect detection algorithms. Detection and recognition of small and complex targets is still a problem that needs to be solved. The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces. During steel strip production mechanical forces and environmental factors cause surface defects of the steel strip. Therefore the detection of such defects is key to the production of high-quality products. Moreover surface defects of the steel strip cause great economic losses to the high-tech industry. So far few studies have explored methods of identifying the defects and most of the currently available algorithms are not sufficiently effective. Therefore this study presents an improved real-time metallic surface defect detection model based on You Only Look Once (YOLOv5) specially designed for small networks. For the smaller features of the target the conventional part is replaced with a depth-wise convolution and channel shuffle mechanism. Then assigning weights to Feature Pyramid Networks (FPN) output features and fusing them increases feature propagation and the networks characterization ability. The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time. The precision of the proposed model achieved by @mAP is 77.5% on the Northeastern University Dataset NEU-DET and 70.18% on the GC10-DET datasets
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
Lz完成签到 ,获得积分10
14秒前
28秒前
Banbor2021完成签到,获得积分0
43秒前
科目三应助wop111采纳,获得10
49秒前
激昂的寒荷完成签到 ,获得积分10
49秒前
bkagyin应助lzy采纳,获得30
1分钟前
winkin完成签到,获得积分10
1分钟前
顾矜应助zhaop采纳,获得10
1分钟前
默默白桃完成签到 ,获得积分10
1分钟前
隐形曼青应助winkin采纳,获得10
1分钟前
1分钟前
zhaop发布了新的文献求助10
1分钟前
谨慎的雁桃完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ZgnomeshghT发布了新的文献求助10
1分钟前
2分钟前
2分钟前
小马甲应助ZgnomeshghT采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
苦瓜大王发布了新的文献求助10
2分钟前
JEREMIAH完成签到,获得积分10
2分钟前
2分钟前
d22110652发布了新的文献求助10
2分钟前
2分钟前
3分钟前
淡水痕发布了新的文献求助10
3分钟前
俭朴山灵完成签到 ,获得积分10
3分钟前
杨乐多完成签到,获得积分10
3分钟前
杨乐多发布了新的文献求助20
3分钟前
万能图书馆应助1234采纳,获得10
4分钟前
blenx完成签到,获得积分10
4分钟前
隐形曼青应助乐乐采纳,获得10
4分钟前
杨叔叔给杨叔叔的求助进行了留言
4分钟前
orixero应助zhaop采纳,获得10
4分钟前
9527应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019288
求助须知:如何正确求助?哪些是违规求助? 4258312
关于积分的说明 13270935
捐赠科研通 4063164
什么是DOI,文献DOI怎么找? 2222498
邀请新用户注册赠送积分活动 1231537
关于科研通互助平台的介绍 1154560