超级电容器
吸附
氧化物
电流密度
功率密度
氢氧化物
材料科学
离子
纳米技术
物理
化学
化学工程
工程类
电容
物理化学
电极
有机化学
冶金
量子力学
功率(物理)
作者
Yaqi Wu,Xuping Jia,Han Zhang,Fengming Zhou,Ziqi Fu,Xiaoping Jia,Zhenjiang Li,Fusheng Liu,Lei Wang,Zhenyu Xiao
标识
DOI:10.1016/j.est.2023.106855
摘要
In this work, a series of double-shell structure with Ni3Se4 as the outer shell and Co3Se4 as the inner shell (Ni3Se4@Co3Se4) are constructed by a hydroxide coating and then Se2−-etching strategy via metal-organic framework as precursor, which provides rich ions diffusion channels for excellent rate performance and cycle stability. The optimized double-shell structure (Ni3Se4@Co3Se4–1:3) presents a specific capacitance of 1120.4 F g−1 at the current density of 1 A g−1, and an outstanding rate performance of maintaining 92.1 % (the current density increased 10 times). Furthermore, an hybrid Zn-based supercapacitor device (Ni3Se4@Co3Se4–1:3//rGO-Zn) is fabricated with reduced graphene oxide coated Zn plate as negative electrode, which delivers a discharging platform (1.5–1.8 V) and high energy density of 271.2 Wh kg−1, is about 6 times higher than the hybrid supercapacitor device assembled with AC as negative (Ni3Se4@Co3Se4–1:3//AC) at similar power density. Meanwhile, a mixed energy storage hypothesis of OH−-anions involved faradic redox reaction, Zn2+-cations involved adsorption/desorption process has been proposed, and the Se-sites may be the initial adsorption center for the surface Zn2+-cations. Interestingly, the synthesis strategy of Ni3Se4@Co3Se4 double-shell structure can be extended to other elements system by changing the core with Ni- or Mn-based Metal Organic Frameworks.
科研通智能强力驱动
Strongly Powered by AbleSci AI