Performance of an artificial intelligence automated system for diabetic eye screening in a large English population

糖尿病性视网膜病变 医学 人工智能 视网膜病变 验光服务 人口 分级(工程) 眼科 糖尿病 计算机科学 内分泌学 环境卫生 工程类 土木工程
作者
Sarah Meredith,Mark van Grinsven,Jonne Engelberts,Dominic Clarke,Vicki Prior,Jo Vodrey,Alison Hammond,Raja Muhammed,Philip Kirby
出处
期刊:Diabetic Medicine [Wiley]
卷期号:40 (6) 被引量:5
标识
DOI:10.1111/dme.15055
摘要

A diabetic eye screening programme has huge value in reducing avoidable sight loss by identifying diabetic retinopathy at a stage when it can be treated. Artificial intelligence automated systems can be used for diabetic eye screening but are not employed in the national English Diabetic Eye Screening Programme. The aim was to report the performance of a commercially available deep-learning artificial intelligence software in a large English population.9817 anonymised image sets from 10,000 consecutive diabetic eye screening episodes were presented to an artificial intelligence software. The sensitivity and specificity of the artificial intelligence system for detecting diabetic retinopathy were determined using the diabetic eye screening programme manual grade according to national protocols as the reference standard.For no diabetic retinopathy versus any diabetic retinopathy, the sensitivity of the artificial intelligence grading system was 69.7% and specificity 92.2%. The performance of the artificial intelligence system was superior for no or mild diabetic retinopathy versus significant or referrable diabetic retinopathy with a sensitivity of 95.4% and specificity of 92.0%. No cases were identified in which the artificial intelligence grade had missed significant diabetic retinopathy.The performance of a commercially available deep-learning artificial intelligence system for identifying diabetic retinopathy in an English national Diabetic Eye Screening Programme is presented. Using the pre-defined settings artificial intelligence performance was highest when identifying diabetic retinopathy which requires an action by the screening programme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
3秒前
单纯的睫毛完成签到,获得积分10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
jinhuanghuiyu应助科研通管家采纳,获得10
5秒前
lakiliu应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
m21o发布了新的文献求助10
6秒前
今后应助wzwz采纳,获得10
8秒前
代玉发布了新的文献求助10
8秒前
8秒前
YYJ发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
1111123发布了新的文献求助10
11秒前
西伯侯完成签到,获得积分10
13秒前
13秒前
13秒前
盛夏之末完成签到,获得积分10
13秒前
Nana发布了新的文献求助10
14秒前
大大小小发布了新的文献求助10
14秒前
15秒前
南埭关注了科研通微信公众号
16秒前
19秒前
烟花应助竹外桃花采纳,获得10
20秒前
自觉涵双完成签到,获得积分10
20秒前
22秒前
丘比特应助max采纳,获得10
22秒前
vv完成签到 ,获得积分10
22秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178332
求助须知:如何正确求助?哪些是违规求助? 2829325
关于积分的说明 7970921
捐赠科研通 2490743
什么是DOI,文献DOI怎么找? 1327734
科研通“疑难数据库(出版商)”最低求助积分说明 635338
版权声明 602904