Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation

人工智能 渲染(计算机图形) 计算机视觉 流离失所(心理学) 计算机科学 姿势 结构健康监测 深度学习 工程类 心理学 结构工程 心理治疗师
作者
Chujin Sun,Donglian Gu,Xinzheng Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:190: 110141-110141 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110141
摘要

Computer vision-based displacement measurement methods have received increasing attention for the structural health monitoring of buildings and infrastructures owing to their advantages over traditional contact sensors. Meanwhile, surveillance cameras widely equipped in urban areas can record a large number of images and videos of buildings and infrastructure, which have the potential to support structural analysis in structural health monitoring or engineering investigations. The three-dimensional (3D) displacement of structures is important for structural analysis. It is challenging for the existing vision-based measurement methods to obtain all the 3D displacement components because they require either multi-view camera systems or additional specially designed targets, which makes it difficult to meet the requirements of measurement applications based on urban surveillance cameras. Therefore, this study proposes a 3D structural displacement measurement method using monocular vision and deep learning based pose estimation. The method uses virtual rendering to synthesize the training set based on the 3D models of the target objects, then trains the deep learning model DPOD (Dense Pose Object Detector) to estimate the poses of the target object, and finally measures the 3D translation of the structures based on the original and destination poses or the original pose and keypoint matching. The effectiveness of the proposed method was validated through static and dynamic experiments. The results showed that the method can meet the needs of obtaining 3D structural displacement and has good accuracy in identifying the principal frequencies of the dynamic responses. The proposed method can support the 3D displacement measurements of buildings and infrastructure based on urban surveillance cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旦皋发布了新的文献求助10
刚刚
1秒前
1秒前
yao完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
今后应助Enso采纳,获得20
1秒前
2秒前
Wakakak完成签到,获得积分10
2秒前
2秒前
小马完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
打打应助现代含桃采纳,获得10
3秒前
Venus完成签到,获得积分10
4秒前
华仔应助英俊001采纳,获得10
5秒前
英姑应助sasa采纳,获得10
5秒前
6秒前
161319141完成签到 ,获得积分10
6秒前
6秒前
上官若男应助知性的醉波采纳,获得10
6秒前
7秒前
科研通AI6应助追寻的问玉采纳,获得10
7秒前
放鹿完成签到,获得积分10
7秒前
Kotory完成签到,获得积分10
8秒前
wanci应助畅快时光采纳,获得10
8秒前
小二郎应助lyy采纳,获得10
8秒前
木槿完成签到,获得积分10
9秒前
66完成签到,获得积分10
9秒前
Lucas应助Scc丶小白采纳,获得30
9秒前
cc完成签到 ,获得积分10
9秒前
潇洒的诗桃完成签到,获得积分0
10秒前
10秒前
李雪慧发布了新的文献求助10
10秒前
小翟完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
pb发布了新的文献求助100
11秒前
上官若男应助roclie采纳,获得10
11秒前
dingbeicn完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665315
求助须知:如何正确求助?哪些是违规求助? 4875879
关于积分的说明 15112944
捐赠科研通 4824400
什么是DOI,文献DOI怎么找? 2582734
邀请新用户注册赠送积分活动 1536689
关于科研通互助平台的介绍 1495315