亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation

人工智能 渲染(计算机图形) 计算机视觉 流离失所(心理学) 计算机科学 姿势 结构健康监测 深度学习 工程类 心理学 心理治疗师 结构工程
作者
Chujin Sun,Donglian Gu,Xinzheng Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:190: 110141-110141 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110141
摘要

Computer vision-based displacement measurement methods have received increasing attention for the structural health monitoring of buildings and infrastructures owing to their advantages over traditional contact sensors. Meanwhile, surveillance cameras widely equipped in urban areas can record a large number of images and videos of buildings and infrastructure, which have the potential to support structural analysis in structural health monitoring or engineering investigations. The three-dimensional (3D) displacement of structures is important for structural analysis. It is challenging for the existing vision-based measurement methods to obtain all the 3D displacement components because they require either multi-view camera systems or additional specially designed targets, which makes it difficult to meet the requirements of measurement applications based on urban surveillance cameras. Therefore, this study proposes a 3D structural displacement measurement method using monocular vision and deep learning based pose estimation. The method uses virtual rendering to synthesize the training set based on the 3D models of the target objects, then trains the deep learning model DPOD (Dense Pose Object Detector) to estimate the poses of the target object, and finally measures the 3D translation of the structures based on the original and destination poses or the original pose and keypoint matching. The effectiveness of the proposed method was validated through static and dynamic experiments. The results showed that the method can meet the needs of obtaining 3D structural displacement and has good accuracy in identifying the principal frequencies of the dynamic responses. The proposed method can support the 3D displacement measurements of buildings and infrastructure based on urban surveillance cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
1秒前
Ava应助CJWDBLW采纳,获得10
10秒前
搜集达人应助nhh采纳,获得10
11秒前
吸尘器完成签到 ,获得积分10
12秒前
16秒前
nhh发布了新的文献求助10
19秒前
24秒前
26秒前
zhou发布了新的文献求助10
26秒前
CJWDBLW发布了新的文献求助10
31秒前
浮游应助zhou采纳,获得10
35秒前
36秒前
trophozoite完成签到 ,获得积分10
42秒前
Prometheusss完成签到,获得积分10
56秒前
57秒前
Prometheusss发布了新的文献求助10
1分钟前
siriuslee99完成签到,获得积分10
1分钟前
TT关注了科研通微信公众号
1分钟前
blenx完成签到,获得积分10
1分钟前
1分钟前
TT发布了新的文献求助10
1分钟前
小学生的练习簿完成签到,获得积分0
2分钟前
CHEN完成签到 ,获得积分10
2分钟前
2分钟前
CC关闭了CC文献求助
2分钟前
CC发布了新的文献求助10
3分钟前
Jasper应助nhh采纳,获得10
3分钟前
4分钟前
4分钟前
nhh发布了新的文献求助10
4分钟前
研友_Lw7OvL完成签到 ,获得积分10
4分钟前
huiliang完成签到,获得积分10
5分钟前
6分钟前
6分钟前
cc完成签到,获得积分10
6分钟前
酷酷的数据线完成签到,获得积分10
6分钟前
as完成签到 ,获得积分10
7分钟前
我爱陶子完成签到 ,获得积分10
7分钟前
7分钟前
automan发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303024
求助须知:如何正确求助?哪些是违规求助? 4450031
关于积分的说明 13848953
捐赠科研通 4336452
什么是DOI,文献DOI怎么找? 2380950
邀请新用户注册赠送积分活动 1375907
关于科研通互助平台的介绍 1342372