Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation

人工智能 渲染(计算机图形) 计算机视觉 流离失所(心理学) 计算机科学 姿势 结构健康监测 深度学习 工程类 心理学 心理治疗师 结构工程
作者
Chujin Sun,Donglian Gu,Xinzheng Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:190: 110141-110141 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110141
摘要

Computer vision-based displacement measurement methods have received increasing attention for the structural health monitoring of buildings and infrastructures owing to their advantages over traditional contact sensors. Meanwhile, surveillance cameras widely equipped in urban areas can record a large number of images and videos of buildings and infrastructure, which have the potential to support structural analysis in structural health monitoring or engineering investigations. The three-dimensional (3D) displacement of structures is important for structural analysis. It is challenging for the existing vision-based measurement methods to obtain all the 3D displacement components because they require either multi-view camera systems or additional specially designed targets, which makes it difficult to meet the requirements of measurement applications based on urban surveillance cameras. Therefore, this study proposes a 3D structural displacement measurement method using monocular vision and deep learning based pose estimation. The method uses virtual rendering to synthesize the training set based on the 3D models of the target objects, then trains the deep learning model DPOD (Dense Pose Object Detector) to estimate the poses of the target object, and finally measures the 3D translation of the structures based on the original and destination poses or the original pose and keypoint matching. The effectiveness of the proposed method was validated through static and dynamic experiments. The results showed that the method can meet the needs of obtaining 3D structural displacement and has good accuracy in identifying the principal frequencies of the dynamic responses. The proposed method can support the 3D displacement measurements of buildings and infrastructure based on urban surveillance cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫山菡完成签到,获得积分10
刚刚
阔达芾完成签到,获得积分10
刚刚
FashionBoy应助dalibaba采纳,获得10
刚刚
念安发布了新的文献求助10
刚刚
1秒前
1秒前
kk发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
领导范儿应助心信鑫采纳,获得10
3秒前
浮游应助偏偏采纳,获得10
3秒前
科研通AI6应助NGU采纳,获得10
3秒前
nonosense发布了新的文献求助10
3秒前
夹心发布了新的文献求助10
3秒前
3秒前
6秒前
丘比特应助小木子采纳,获得10
6秒前
6秒前
汤圆关注了科研通微信公众号
6秒前
cjdsb发布了新的文献求助10
6秒前
7秒前
wxy发布了新的文献求助10
7秒前
7秒前
8秒前
巴黎的防发布了新的文献求助10
8秒前
英俊的铭应助温馨采纳,获得10
9秒前
佳银完成签到,获得积分10
10秒前
dalibaba发布了新的文献求助10
10秒前
10秒前
默默善愁发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
奋斗向南发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
levitt233完成签到 ,获得积分10
14秒前
mona完成签到 ,获得积分10
14秒前
zero完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461138
求助须知:如何正确求助?哪些是违规求助? 4566175
关于积分的说明 14303831
捐赠科研通 4491884
什么是DOI,文献DOI怎么找? 2460490
邀请新用户注册赠送积分活动 1449811
关于科研通互助平台的介绍 1425582