亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation

人工智能 渲染(计算机图形) 计算机视觉 流离失所(心理学) 计算机科学 姿势 结构健康监测 深度学习 工程类 心理学 心理治疗师 结构工程
作者
Chujin Sun,Donglian Gu,Xinzheng Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:190: 110141-110141 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110141
摘要

Computer vision-based displacement measurement methods have received increasing attention for the structural health monitoring of buildings and infrastructures owing to their advantages over traditional contact sensors. Meanwhile, surveillance cameras widely equipped in urban areas can record a large number of images and videos of buildings and infrastructure, which have the potential to support structural analysis in structural health monitoring or engineering investigations. The three-dimensional (3D) displacement of structures is important for structural analysis. It is challenging for the existing vision-based measurement methods to obtain all the 3D displacement components because they require either multi-view camera systems or additional specially designed targets, which makes it difficult to meet the requirements of measurement applications based on urban surveillance cameras. Therefore, this study proposes a 3D structural displacement measurement method using monocular vision and deep learning based pose estimation. The method uses virtual rendering to synthesize the training set based on the 3D models of the target objects, then trains the deep learning model DPOD (Dense Pose Object Detector) to estimate the poses of the target object, and finally measures the 3D translation of the structures based on the original and destination poses or the original pose and keypoint matching. The effectiveness of the proposed method was validated through static and dynamic experiments. The results showed that the method can meet the needs of obtaining 3D structural displacement and has good accuracy in identifying the principal frequencies of the dynamic responses. The proposed method can support the 3D displacement measurements of buildings and infrastructure based on urban surveillance cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
wanci应助清一采纳,获得10
1秒前
xiaohardy完成签到,获得积分10
2秒前
一号小玩家完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
七濑完成签到,获得积分10
3秒前
Yyyyyyyyy发布了新的文献求助10
3秒前
7秒前
8秒前
9秒前
皮皮完成签到 ,获得积分10
12秒前
丘比特应助zzazz采纳,获得10
13秒前
清一发布了新的文献求助10
13秒前
YZChen完成签到,获得积分10
19秒前
21秒前
4114发布了新的文献求助10
21秒前
37秒前
Nomb1发布了新的文献求助10
43秒前
在水一方应助留着待会儿采纳,获得10
46秒前
共享精神应助Nomb1采纳,获得10
48秒前
54秒前
深情安青应助小白果果采纳,获得10
57秒前
58秒前
caoju发布了新的文献求助10
58秒前
Chen完成签到,获得积分10
1分钟前
飘逸的雁露完成签到,获得积分10
1分钟前
caoju完成签到,获得积分10
1分钟前
Jasper应助AA采纳,获得10
1分钟前
1分钟前
华仔应助一两二两三两斤采纳,获得10
1分钟前
SciGPT应助王大壮采纳,获得10
1分钟前
小白果果发布了新的文献求助10
1分钟前
九星完成签到 ,获得积分10
1分钟前
AX完成签到,获得积分10
1分钟前
小鸟芋圆露露完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502750
求助须知:如何正确求助?哪些是违规求助? 4598475
关于积分的说明 14464218
捐赠科研通 4532060
什么是DOI,文献DOI怎么找? 2483834
邀请新用户注册赠送积分活动 1467025
关于科研通互助平台的介绍 1439669