Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation

人工智能 渲染(计算机图形) 计算机视觉 流离失所(心理学) 计算机科学 姿势 结构健康监测 深度学习 工程类 心理学 心理治疗师 结构工程
作者
Chujin Sun,Donglian Gu,Xinzheng Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:190: 110141-110141 被引量:19
标识
DOI:10.1016/j.ymssp.2023.110141
摘要

Computer vision-based displacement measurement methods have received increasing attention for the structural health monitoring of buildings and infrastructures owing to their advantages over traditional contact sensors. Meanwhile, surveillance cameras widely equipped in urban areas can record a large number of images and videos of buildings and infrastructure, which have the potential to support structural analysis in structural health monitoring or engineering investigations. The three-dimensional (3D) displacement of structures is important for structural analysis. It is challenging for the existing vision-based measurement methods to obtain all the 3D displacement components because they require either multi-view camera systems or additional specially designed targets, which makes it difficult to meet the requirements of measurement applications based on urban surveillance cameras. Therefore, this study proposes a 3D structural displacement measurement method using monocular vision and deep learning based pose estimation. The method uses virtual rendering to synthesize the training set based on the 3D models of the target objects, then trains the deep learning model DPOD (Dense Pose Object Detector) to estimate the poses of the target object, and finally measures the 3D translation of the structures based on the original and destination poses or the original pose and keypoint matching. The effectiveness of the proposed method was validated through static and dynamic experiments. The results showed that the method can meet the needs of obtaining 3D structural displacement and has good accuracy in identifying the principal frequencies of the dynamic responses. The proposed method can support the 3D displacement measurements of buildings and infrastructure based on urban surveillance cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万晓博完成签到,获得积分20
1秒前
小龙发布了新的文献求助10
1秒前
zhang发布了新的文献求助10
4秒前
搜集达人应助axis采纳,获得10
5秒前
6秒前
10秒前
12秒前
13秒前
健忘的金完成签到 ,获得积分10
15秒前
哦可完成签到,获得积分10
15秒前
16秒前
SYLH应助NoobMasterZYF采纳,获得10
16秒前
含蓄的绍辉完成签到,获得积分10
17秒前
18秒前
18秒前
今后应助陆驳采纳,获得10
19秒前
zgt01发布了新的文献求助10
20秒前
刘亚赛发布了新的文献求助10
21秒前
琉璃929发布了新的文献求助10
23秒前
小孙的微信完成签到,获得积分10
25秒前
25秒前
CAOHOU给飞快的幻雪的求助进行了留言
29秒前
lyejxusgh发布了新的文献求助10
31秒前
英姑应助xuanhui采纳,获得10
31秒前
琉璃929完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
32秒前
SYLH应助温城采纳,获得10
34秒前
34秒前
优秀的念双完成签到,获得积分10
34秒前
35秒前
传奇3应助科研通管家采纳,获得10
36秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
赘婿应助科研通管家采纳,获得10
37秒前
Billy应助科研通管家采纳,获得20
37秒前
37秒前
Owen应助科研通管家采纳,获得30
37秒前
小二郎应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824