Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation

人工智能 渲染(计算机图形) 计算机视觉 流离失所(心理学) 计算机科学 姿势 结构健康监测 深度学习 工程类 心理学 心理治疗师 结构工程
作者
Chujin Sun,Donglian Gu,Xinzheng Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:190: 110141-110141 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110141
摘要

Computer vision-based displacement measurement methods have received increasing attention for the structural health monitoring of buildings and infrastructures owing to their advantages over traditional contact sensors. Meanwhile, surveillance cameras widely equipped in urban areas can record a large number of images and videos of buildings and infrastructure, which have the potential to support structural analysis in structural health monitoring or engineering investigations. The three-dimensional (3D) displacement of structures is important for structural analysis. It is challenging for the existing vision-based measurement methods to obtain all the 3D displacement components because they require either multi-view camera systems or additional specially designed targets, which makes it difficult to meet the requirements of measurement applications based on urban surveillance cameras. Therefore, this study proposes a 3D structural displacement measurement method using monocular vision and deep learning based pose estimation. The method uses virtual rendering to synthesize the training set based on the 3D models of the target objects, then trains the deep learning model DPOD (Dense Pose Object Detector) to estimate the poses of the target object, and finally measures the 3D translation of the structures based on the original and destination poses or the original pose and keypoint matching. The effectiveness of the proposed method was validated through static and dynamic experiments. The results showed that the method can meet the needs of obtaining 3D structural displacement and has good accuracy in identifying the principal frequencies of the dynamic responses. The proposed method can support the 3D displacement measurements of buildings and infrastructure based on urban surveillance cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zw发布了新的文献求助10
刚刚
嘛呱发布了新的文献求助10
1秒前
2秒前
3秒前
星辰坠于海完成签到,获得积分0
5秒前
大洋葱发布了新的文献求助10
6秒前
共享精神应助缓慢含烟采纳,获得10
7秒前
FFFF发布了新的文献求助10
8秒前
8秒前
longyk完成签到,获得积分10
9秒前
9秒前
10秒前
无私雁菱应助Li采纳,获得10
10秒前
11秒前
13秒前
15秒前
小易发布了新的文献求助10
15秒前
Dr桃桃发布了新的文献求助10
16秒前
哲别发布了新的文献求助10
16秒前
香蕉觅云应助longyk采纳,获得10
17秒前
orixero应助鲜艳的芹采纳,获得10
17秒前
科研通AI6应助LIJIngcan采纳,获得10
18秒前
缓慢含烟发布了新的文献求助10
19秒前
Shubin828完成签到,获得积分10
19秒前
FFFF完成签到,获得积分10
20秒前
酱紫完成签到 ,获得积分10
21秒前
无语完成签到 ,获得积分10
22秒前
汪爷爷发布了新的文献求助10
23秒前
缓慢含烟完成签到,获得积分10
23秒前
25秒前
Dr桃桃完成签到,获得积分10
25秒前
25秒前
lxz完成签到 ,获得积分10
25秒前
26秒前
yyy发布了新的文献求助10
26秒前
27秒前
好运大王完成签到,获得积分10
27秒前
impending发布了新的文献求助10
28秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866