Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation

人工智能 渲染(计算机图形) 计算机视觉 流离失所(心理学) 计算机科学 姿势 结构健康监测 深度学习 工程类 心理学 心理治疗师 结构工程
作者
Chujin Sun,Donglian Gu,Xinzheng Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:190: 110141-110141 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110141
摘要

Computer vision-based displacement measurement methods have received increasing attention for the structural health monitoring of buildings and infrastructures owing to their advantages over traditional contact sensors. Meanwhile, surveillance cameras widely equipped in urban areas can record a large number of images and videos of buildings and infrastructure, which have the potential to support structural analysis in structural health monitoring or engineering investigations. The three-dimensional (3D) displacement of structures is important for structural analysis. It is challenging for the existing vision-based measurement methods to obtain all the 3D displacement components because they require either multi-view camera systems or additional specially designed targets, which makes it difficult to meet the requirements of measurement applications based on urban surveillance cameras. Therefore, this study proposes a 3D structural displacement measurement method using monocular vision and deep learning based pose estimation. The method uses virtual rendering to synthesize the training set based on the 3D models of the target objects, then trains the deep learning model DPOD (Dense Pose Object Detector) to estimate the poses of the target object, and finally measures the 3D translation of the structures based on the original and destination poses or the original pose and keypoint matching. The effectiveness of the proposed method was validated through static and dynamic experiments. The results showed that the method can meet the needs of obtaining 3D structural displacement and has good accuracy in identifying the principal frequencies of the dynamic responses. The proposed method can support the 3D displacement measurements of buildings and infrastructure based on urban surveillance cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情的新儿完成签到,获得积分10
刚刚
虚幻的芷珊完成签到,获得积分10
1秒前
clio完成签到,获得积分10
1秒前
ri_290发布了新的文献求助10
2秒前
2秒前
所所应助耍酷问兰采纳,获得10
2秒前
scuter发布了新的文献求助10
2秒前
3秒前
渺渺发布了新的文献求助10
4秒前
jwjzsznb发布了新的文献求助50
4秒前
4秒前
阳光的衫发布了新的文献求助10
5秒前
爆爆发布了新的文献求助10
5秒前
stop here完成签到,获得积分10
5秒前
bkagyin应助scuter采纳,获得10
7秒前
思源应助Genius采纳,获得10
7秒前
啵啵龙完成签到,获得积分10
8秒前
9秒前
酷波er应助HUYAOWEI采纳,获得10
10秒前
乐乐应助HUYAOWEI采纳,获得10
10秒前
大个应助HUYAOWEI采纳,获得10
10秒前
科研通AI6应助HUYAOWEI采纳,获得10
10秒前
小二郎应助HUYAOWEI采纳,获得10
10秒前
深情安青应助HUYAOWEI采纳,获得10
10秒前
科研通AI2S应助HUYAOWEI采纳,获得10
10秒前
SciGPT应助HUYAOWEI采纳,获得10
10秒前
小蘑菇应助HUYAOWEI采纳,获得10
10秒前
wxyshare应助HUYAOWEI采纳,获得20
10秒前
zzzzzzzzzzzz完成签到,获得积分10
10秒前
爆爆完成签到,获得积分10
11秒前
11秒前
可爱藏今发布了新的文献求助10
11秒前
Sy发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
开朗楼房完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
zzxr完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497