How Appreciation and Attention Affect Contributions to Electronic Networks of Practice

有用性 情感(语言学) 探索者 集合(抽象数据类型) 点选流向 心理学 计算机科学 社会心理学 万维网 政治学 互联网 沟通 Web API Web建模 法学 程序设计语言
作者
Xue Tan,Fujie Jin,Alan R. Dennis
出处
期刊:Journal of Management Information Systems [Informa]
卷期号:39 (4): 1037-1063 被引量:8
标识
DOI:10.1080/07421222.2022.2127443
摘要

ABSTRACTWe conducted three studies to examine how two types of user-generated feedback, appreciation and attention, affect users' decisions to make voluntary knowledge contributions to electronic networks of practice (ENPs). Appreciation is reflected in positive ratings, votes, and helpfulness evaluations. Attention is reflected in the number of views of contributed content. The first study used clickstream data from a college application ENP in China, where information seekers can read posted information asynchronously and request synchronous consultations with volunteers. The second study was a controlled online experiment in the United States where we assessed users' willingness to answer questions in a college application ENP asynchronously. The third study examined knowledge contribution across a diverse set of topics using a well-established ENP that serves more than 100 countries. In all three studies, the results consistently show that greater appreciation increased continued knowledge contribution, but greater attention without sufficient appreciation negatively affected contributions. Our findings show the theoretically intertwined nature of attention and appreciation and offer insights for the design and management of ENP feedback systems to encourage user contributions.KEYWORDS: Electronic networks of practiceENPonline communitiesonline feedbackincentive designonline knowledge contributiononline volunteerism Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/07421222.2022.2127443Disclosure StatementNo potential conflict of interest was reported by the authors.Notes1 Senior high school students have a time window of about four days after they learn their national exam scores to complete their primary round of college applications. Students submit a list of colleges and programs with strict order of preference. Colleges make admission decisions, taking into consideration how students rank them in their orders of preference. If not admitted, students submit their secondary round of applications for lower-tier colleges about a month later. Such a sequential admissions process presents a complex decision for students because they need to balance the trade-off between risk and quality of admission.2 We interpreted the coefficient estimates this way since we have standardized both NumRating and NumView after adding one and taking logarithms. The average level of appreciation is 0.426, and the standard deviation for NumRatingit, the log-transformed appreciation feedback, is 0.702. A one standard deviation increase in NumRatingit corresponds to an increase from 1.158 five-star ratings (the original scale) to exp(0.702 + 0.426) -1 = 2.09 five-star ratings. The results for the non-standardized variables with more direct interpretations are included in the Online Supplemental Appendix. Note that the first-order terms for non-standardized variables cannot be interpreted directly when the interaction term is included.3 These calculations are based on the summary statistics in the variables. The average level of appreciation is 1.158 in its original scale, and the standard deviation for NumRatingit, the log-transformed appreciation feedback, is 0.702.4 The platform also allows a downvote feedback, but this feedback is not visible to knowledge contributors because the Q&A platform does not want its users to focus on negativity. The downvotes are used to alter the visibility of questions or answers. As such, we do not consider it as feedback to the contributors.5 This observation window is sufficient to capture the impact of feedback on knowledge contribution for three reasons. First, the identification of our model relies on within-subject variation in the feedback, and we observe great variation in both attention and appreciation within this four-day period. Specifically, the most views were generated on Day 2, and the most upvotes were generated on Day 3. Second, we examine the short-term impact of feedback on knowledge contribution on the next day. Third, the limitation of a relatively short panel can be addressed by our relatively large number of users.Additional informationNotes on contributorsXue (Jane) TanXue (Jane) Tan (janetan@iu.edu) is an assistant professor in the Department of Operations and Decision Technologies, Kelley School of Business, Indiana University. She received her Ph.D. in Business Administration from the Foster School of Business, University of Washington. Dr. Tan's research interests include crowdfunding, social media fundraising, online volunteerism, and electronic commerce. She has published in Information Systems Research and MIS Quarterly.Fujie JinFujie Jin (jinf@indiana.edu) is an assistant professor in the Operations & Decisions Technologies Department at Kelley School of Business, Indiana University. She holds a Ph.D. in Operations and Information Systems from the Wharton School, University of Pennsylvania. Dr. Jin's research focuses on the impact of technology on organizations and user behavior on platforms. Her work has been published in leading journals and conference proceedings in.Alan R. DennisAlan R. Dennis (ardennis@indiana.edu; corresponding author) is Professor of Information Systems and holds the John T. Chambers Chair of Internet Systems in the Kelley School of Business at Indiana University. He has written more than 150 research papers, and has won numerous awards for his theoretical and applied research. Dr. Dennis's research focuses on team collaboration, fake news on social media, AI-controlled digital humans, and information security. He is a Fellow of Association for Information Systems and received the LEO Award in 2021. He is also a Past President of AIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
王志鹏发布了新的文献求助10
1秒前
dou发布了新的文献求助10
4秒前
耍酷的丹珍完成签到,获得积分10
4秒前
白baibbb完成签到,获得积分20
5秒前
6秒前
蒋蒋蒋发布了新的文献求助10
6秒前
7秒前
bybyby完成签到,获得积分10
8秒前
Naomi发布了新的文献求助10
8秒前
傲娇松鼠发布了新的文献求助30
8秒前
科研通AI5应助safari采纳,获得10
8秒前
9秒前
完美世界应助不想搞科研采纳,获得10
10秒前
可爱的函函应助蒋蒋蒋采纳,获得10
10秒前
10秒前
11秒前
maclogos发布了新的文献求助20
11秒前
Ryan完成签到,获得积分10
11秒前
天天快乐应助jiafang采纳,获得10
12秒前
哦了欧了完成签到 ,获得积分10
12秒前
科研通AI5应助啊棕采纳,获得10
13秒前
13秒前
15秒前
hql关注了科研通微信公众号
16秒前
16秒前
Yumin发布了新的文献求助10
16秒前
17秒前
蓝白啦发布了新的文献求助10
17秒前
17秒前
Nougat发布了新的文献求助50
17秒前
zbbzbbzbb完成签到,获得积分10
19秒前
小幻完成签到,获得积分10
20秒前
cheria完成签到,获得积分10
20秒前
Naomi完成签到,获得积分10
21秒前
annieduan完成签到 ,获得积分10
22秒前
22秒前
脑洞疼应助hajy采纳,获得10
22秒前
传奇3应助大力无声采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734