Detection of Deepfake Videos Using Long-Distance Attention

计算机科学 人工智能 领域(数学分析) 光学(聚焦) 透视图(图形) 组分(热力学) 面子(社会学概念) 空间分析 帧(网络) 模式识别(心理学) 计算机视觉 数学 物理 数学分析 社会学 光学 统计 热力学 电信 社会科学
作者
Wei Lu,Lingyi Liu,Bolin Zhang,Junwei Luo,Xianfeng Zhao,Yicong Zhou,Jiwu Huang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9366-9379 被引量:16
标识
DOI:10.1109/tnnls.2022.3233063
摘要

With the rapid progress of deepfake techniques in recent years, facial video forgery can generate highly deceptive video content and bring severe security threats. And detection of such forgery videos is much more urgent and challenging. Most existing detection methods treat the problem as a vanilla binary classification problem. In this article, the problem is treated as a special fine-grained classification problem since the differences between fake and real faces are very subtle. It is observed that most existing face forgery methods left some common artifacts in the spatial domain and time domain, including generative defects in the spatial domain and interframe inconsistencies in the time domain. And a spatial-temporal model is proposed which has two components for capturing spatial and temporal forgery traces from a global perspective, respectively. The two components are designed using a novel long-distance attention mechanism. One component of the spatial domain is used to capture artifacts in a single frame, and the other component of the time domain is used to capture artifacts in consecutive frames. They generate attention maps in the form of patches. The attention method has a broader vision which contributes to better assembling global information and extracting local statistic information. Finally, the attention maps are used to guide the network to focus on pivotal parts of the face, just like other fine-grained classification methods. The experimental results on different public datasets demonstrate that the proposed method achieves state-of-the-art performance, and the proposed long-distance attention method can effectively capture pivotal parts for face forgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
澄与瑾完成签到,获得积分10
1秒前
Luo完成签到,获得积分10
1秒前
搜集达人应助May采纳,获得10
1秒前
1秒前
天机鲁比完成签到,获得积分10
1秒前
2秒前
宛海完成签到,获得积分10
2秒前
浅笑安然完成签到,获得积分10
3秒前
Luo发布了新的文献求助30
4秒前
5秒前
5秒前
冰淇淋完成签到,获得积分10
6秒前
宛海发布了新的文献求助10
6秒前
6秒前
忧郁的访波完成签到,获得积分10
7秒前
852应助Mayday采纳,获得10
9秒前
10秒前
小雒雒完成签到,获得积分10
11秒前
64658应助时尚的世立采纳,获得10
11秒前
L外驴尔X发布了新的文献求助10
11秒前
万松辉完成签到,获得积分10
12秒前
lin完成签到,获得积分20
13秒前
卡奇Mikey完成签到,获得积分10
14秒前
15秒前
18秒前
霸的彤发布了新的文献求助10
18秒前
water应助zzzzzz采纳,获得10
19秒前
yzm完成签到,获得积分10
20秒前
牛牛发布了新的文献求助10
22秒前
Orange应助L外驴尔X采纳,获得10
22秒前
Owen应助无聊的南松采纳,获得30
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
深情安青应助时尚的世立采纳,获得10
27秒前
Orange应助MMM采纳,获得10
29秒前
flasher22发布了新的文献求助10
29秒前
小蘑菇应助lin采纳,获得10
31秒前
32秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565