Work Together: Correlation-Identity Reconstruction Hashing for Unsupervised Cross-Modal Retrieval

散列函数 计算机科学 情态动词 理论计算机科学 语义学(计算机科学) 人工智能 图形 聚类分析 数据挖掘 模式识别(心理学) 程序设计语言 计算机安全 化学 高分子化学
作者
Lei Zhu,Xize Wu,Jingjing Li,Zheng Zhang,Weili Guan,Heng Tao Shen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 8838-8851 被引量:39
标识
DOI:10.1109/tkde.2022.3218656
摘要

Unsupervised cross-modal hashing has attracted considerable attention to support large-scale cross-modal retrieval. Although promising progresses have been made so far, existing methods still suffer from limited capability on excavating and preserving the intrinsic multi-modal semantics. In this paper, we propose a Correlation-Identity Reconstruction Hashing (CIRH) method to alleviate this challenging problem. We develop a new unsupervised deep cross-modal hash learning framework to model and preserve the heterogeneous multi-modal correlation semantics into both hash codes and functions, and simultaneously, we involve both the hash codes and functions with the descriptive identity semantics. Specifically, we construct a multi-modal collaborated graph to model the heterogeneous multi-modal correlations, and jointly perform the intra-modal and cross-modal semantic aggregation on homogeneous and heterogeneous graph networks to generate a multi-modal complementary representation with correlation reconstruction. Furthermore, an identity semantic reconstruction process is designed to involve the generated representation with identity semantics by reconstructing the input modality representations. Finally, we propose a correlation-identity consistent hash function learning strategy to transfer the modelled multi-modal semantics into the neural networks of modality-specific deep hash functions. Experiments demonstrate the superior performance of the proposed method on both retrieval accuracy and efficiency. We provide our source codes and experimental datasets at https://github.com/XizeWu/CIRH
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉水云完成签到,获得积分10
1秒前
Yeah发布了新的文献求助10
1秒前
2秒前
研友_ZeqM0Z完成签到,获得积分10
3秒前
云中鹤发布了新的文献求助10
4秒前
2VON发布了新的文献求助10
5秒前
善学以致用应助小鱼采纳,获得10
5秒前
5秒前
7秒前
7秒前
9秒前
wanci应助gan采纳,获得10
9秒前
hah发布了新的文献求助10
10秒前
Owen应助fangzhang采纳,获得10
11秒前
上官若男应助MADMAX采纳,获得10
12秒前
12秒前
苏苏发布了新的文献求助10
13秒前
所所应助真一松采纳,获得10
16秒前
20秒前
23秒前
yuzhou完成签到 ,获得积分10
24秒前
Ron发布了新的文献求助10
25秒前
大模型应助fangzhang采纳,获得10
25秒前
七里香发布了新的文献求助10
26秒前
29秒前
潇潇雨歇发布了新的文献求助10
29秒前
29秒前
29秒前
Yeah完成签到,获得积分10
30秒前
可靠的公爵熊完成签到,获得积分10
32秒前
科研小白发布了新的文献求助10
35秒前
潇潇雨歇发布了新的文献求助10
35秒前
Meyer发布了新的文献求助10
35秒前
无花果应助123采纳,获得10
35秒前
36秒前
37秒前
小遇完成签到 ,获得积分10
39秒前
39秒前
40秒前
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268257
求助须知:如何正确求助?哪些是违规求助? 2907817
关于积分的说明 8343362
捐赠科研通 2578165
什么是DOI,文献DOI怎么找? 1401736
科研通“疑难数据库(出版商)”最低求助积分说明 655165
邀请新用户注册赠送积分活动 634269