Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102721-102721 被引量:40
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Vivienne采纳,获得10
刚刚
红桃EDC完成签到,获得积分10
1秒前
1233发布了新的文献求助10
1秒前
顾矜应助H4ppy_n3w_y34r采纳,获得10
1秒前
2秒前
2秒前
Tq完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
spc68应助fanghongjian采纳,获得10
5秒前
fushumei发布了新的文献求助10
5秒前
5秒前
姽稚发布了新的文献求助10
6秒前
9秒前
10秒前
火星上的无声完成签到,获得积分10
10秒前
Summer完成签到,获得积分10
10秒前
蔡雯发布了新的文献求助10
10秒前
enen完成签到,获得积分10
11秒前
Danny完成签到,获得积分10
12秒前
oio发布了新的文献求助10
14秒前
ho完成签到 ,获得积分10
15秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
贪玩的蛋挞完成签到,获得积分10
21秒前
23秒前
24秒前
体能行者发布了新的文献求助30
25秒前
jialin完成签到,获得积分10
25秒前
李健应助GM采纳,获得10
26秒前
谢小盟应助要减肥的魔镜采纳,获得20
26秒前
时行舒发布了新的文献求助10
30秒前
乐邦发布了新的文献求助10
30秒前
30秒前
kk完成签到,获得积分10
31秒前
wuxunxun2015发布了新的文献求助10
32秒前
香蕉诗蕊完成签到,获得积分0
32秒前
36秒前
diu完成签到,获得积分10
36秒前
充电宝应助酷酷炫饭采纳,获得10
36秒前
浓雾完成签到,获得积分10
37秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060