已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102721-102721 被引量:40
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyjsunye完成签到 ,获得积分10
刚刚
刚刚
刚刚
噜啦啦完成签到 ,获得积分10
1秒前
昏睡的科研小白完成签到 ,获得积分10
2秒前
喬老師完成签到,获得积分10
2秒前
3秒前
fxx完成签到,获得积分10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得30
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
嘿嘿应助科研通管家采纳,获得10
3秒前
3秒前
嘿嘿应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
澄子完成签到 ,获得积分10
4秒前
学不完了完成签到 ,获得积分10
4秒前
er123721发布了新的文献求助10
5秒前
科目三应助忠嗣院学员采纳,获得10
6秒前
Orange应助cathe采纳,获得10
6秒前
沉默的谷丝完成签到,获得积分10
6秒前
李燕发布了新的文献求助10
8秒前
Bowman完成签到 ,获得积分10
9秒前
YElv完成签到,获得积分10
9秒前
ahaaa完成签到 ,获得积分10
10秒前
10秒前
zho应助null采纳,获得10
11秒前
12秒前
12秒前
溺水的闲鱼完成签到 ,获得积分10
12秒前
shen完成签到 ,获得积分10
12秒前
SN完成签到 ,获得积分10
12秒前
Thi发布了新的文献求助10
14秒前
1234完成签到 ,获得积分10
15秒前
un发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590141
求助须知:如何正确求助?哪些是违规求助? 4674591
关于积分的说明 14794672
捐赠科研通 4630392
什么是DOI,文献DOI怎么找? 2532610
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571