Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102721-102721 被引量:40
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8完成签到,获得积分0
刚刚
1秒前
2秒前
今后应助王世俊采纳,获得10
2秒前
wuming完成签到,获得积分10
3秒前
荣耀发布了新的文献求助10
3秒前
老仙翁发布了新的文献求助10
3秒前
ssx完成签到,获得积分10
3秒前
3秒前
4秒前
彧辰完成签到 ,获得积分10
5秒前
6秒前
AR关闭了AR文献求助
6秒前
yy发布了新的文献求助10
6秒前
6秒前
8秒前
yznfly应助境屾采纳,获得30
8秒前
炙热秋翠发布了新的文献求助10
8秒前
ml完成签到 ,获得积分10
10秒前
蘑菇腿完成签到,获得积分10
10秒前
10秒前
WYR发布了新的文献求助10
12秒前
cttc完成签到,获得积分10
12秒前
李健的小迷弟应助张进采纳,获得10
14秒前
xionggege完成签到,获得积分10
14秒前
大雪完成签到 ,获得积分10
15秒前
王诗琪发布了新的文献求助15
17秒前
量子星尘发布了新的文献求助10
17秒前
cttc发布了新的文献求助10
17秒前
完美世界应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
T_KYG发布了新的文献求助10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
19秒前
小灰灰应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337