清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102721-102721 被引量:40
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Su发布了新的文献求助10
4秒前
晴天完成签到 ,获得积分10
22秒前
Tong完成签到,获得积分0
23秒前
Ava应助科研通管家采纳,获得10
24秒前
乐乐应助CC采纳,获得10
28秒前
cgs完成签到 ,获得积分10
31秒前
徐团伟完成签到 ,获得积分10
36秒前
1分钟前
英俊的铭应助柏风华采纳,获得10
1分钟前
文献属于所有科研人完成签到 ,获得积分10
1分钟前
Jerry完成签到 ,获得积分10
1分钟前
CC完成签到,获得积分10
1分钟前
whitepiece完成签到,获得积分10
1分钟前
2分钟前
柏风华发布了新的文献求助10
2分钟前
Senase完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小蜜蜂发布了新的文献求助10
2分钟前
2分钟前
Su发布了新的文献求助10
2分钟前
1437594843完成签到 ,获得积分10
3分钟前
貔貅完成签到 ,获得积分10
3分钟前
寡核苷酸小白完成签到 ,获得积分10
3分钟前
sevenhill完成签到 ,获得积分0
3分钟前
光能使者完成签到 ,获得积分10
3分钟前
michael完成签到,获得积分10
3分钟前
Ashao完成签到 ,获得积分10
3分钟前
gmc完成签到 ,获得积分10
3分钟前
隐形荟完成签到 ,获得积分10
4分钟前
kyokyoro完成签到,获得积分10
4分钟前
YZY完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
可夫司机完成签到 ,获得积分10
5分钟前
felix发布了新的文献求助10
5分钟前
felix发布了新的文献求助10
5分钟前
蓝意完成签到,获得积分0
5分钟前
笨笨完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651195
求助须知:如何正确求助?哪些是违规求助? 4783856
关于积分的说明 15053291
捐赠科研通 4809907
什么是DOI,文献DOI怎么找? 2572785
邀请新用户注册赠送积分活动 1528714
关于科研通互助平台的介绍 1487737