Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102721-102721 被引量:13
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大林发布了新的文献求助10
1秒前
空曲发布了新的文献求助10
1秒前
识途发布了新的文献求助10
2秒前
2秒前
科研狗子完成签到,获得积分10
2秒前
安青兰发布了新的文献求助10
2秒前
王芋圆发布了新的文献求助10
3秒前
1111完成签到 ,获得积分10
4秒前
4秒前
杨森omg发布了新的文献求助10
5秒前
小蘑菇应助服部平次采纳,获得10
6秒前
6秒前
瓷儿发布了新的文献求助10
6秒前
6秒前
7秒前
烟花应助颖中竹子采纳,获得30
8秒前
wangjun应助庆香采纳,获得10
9秒前
9秒前
贤惠的碧空完成签到,获得积分10
9秒前
桐桐应助空曲采纳,获得10
11秒前
11秒前
14秒前
yangican发布了新的文献求助10
15秒前
16秒前
wanci应助白小黑采纳,获得10
16秒前
桐桐应助BENRONG采纳,获得10
16秒前
bin发布了新的文献求助10
17秒前
奋斗安莲发布了新的文献求助10
18秒前
健忘的牛排完成签到,获得积分10
18秒前
白衣未央发布了新的文献求助10
19秒前
20秒前
111发布了新的文献求助10
21秒前
陈家小萝卜发布了新的文献求助150
21秒前
大胆盼兰发布了新的文献求助10
23秒前
23秒前
25秒前
25秒前
三三发布了新的文献求助10
26秒前
所所应助小小爱心娜采纳,获得10
26秒前
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171184
求助须知:如何正确求助?哪些是违规求助? 2822083
关于积分的说明 7937925
捐赠科研通 2482524
什么是DOI,文献DOI怎么找? 1322654
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627