已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102721-102721 被引量:40
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KK完成签到,获得积分10
3秒前
共享精神应助刘萌清采纳,获得10
3秒前
挑片岛屿发布了新的文献求助10
4秒前
5秒前
上官若男应助神医magical采纳,获得10
6秒前
Tuniverse_完成签到 ,获得积分10
10秒前
想毕业的笑笑完成签到,获得积分20
11秒前
11秒前
彭于晏应助默默的采纳,获得10
12秒前
研友_ngX12Z发布了新的文献求助10
12秒前
13秒前
充电宝应助福多多采纳,获得10
13秒前
量子星尘发布了新的文献求助10
16秒前
Akebi完成签到,获得积分10
17秒前
17秒前
大大怪完成签到,获得积分20
17秒前
海荷完成签到,获得积分10
17秒前
贾克斯发布了新的文献求助10
18秒前
18秒前
科研白完成签到 ,获得积分10
20秒前
20秒前
21秒前
22秒前
专一的蛋挞完成签到,获得积分10
23秒前
23秒前
pure完成签到 ,获得积分10
24秒前
默默的发布了新的文献求助10
25秒前
张莜莜发布了新的文献求助10
25秒前
多情的安雁完成签到,获得积分10
25秒前
26秒前
Z1关注了科研通微信公众号
27秒前
Criminology34应助专一的蛋挞采纳,获得10
28秒前
李晓发布了新的文献求助30
28秒前
30秒前
Laputa发布了新的文献求助10
31秒前
飘逸惠完成签到,获得积分10
33秒前
bc完成签到,获得积分10
33秒前
32完成签到,获得积分20
33秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702