Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:84: 102721-102721 被引量:40
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的绝山完成签到,获得积分10
刚刚
刚刚
FZUer发布了新的文献求助10
刚刚
MMZ完成签到,获得积分10
刚刚
gugu发布了新的文献求助10
1秒前
所所应助刘钱美子采纳,获得10
1秒前
tb_answer完成签到,获得积分10
2秒前
2秒前
2秒前
小蘑菇应助ZhengSyHoe采纳,获得10
2秒前
静心安逸发布了新的文献求助10
3秒前
3秒前
Bailey完成签到,获得积分20
3秒前
zhangweiji完成签到,获得积分10
4秒前
4秒前
丘比特应助刘国建郭菱香采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
赘婿应助怕黑三毒采纳,获得10
6秒前
6秒前
壮观的擎发布了新的文献求助10
6秒前
7秒前
CodeCraft应助PSCs采纳,获得10
7秒前
哈哈完成签到,获得积分10
7秒前
香蕉觅云应助大雁采纳,获得10
8秒前
zhshyhy完成签到,获得积分10
8秒前
冷静的羿完成签到,获得积分10
8秒前
8秒前
锦李发布了新的文献求助10
8秒前
8秒前
qingmao完成签到,获得积分10
9秒前
自觉南风发布了新的文献求助10
9秒前
HaowenJiang发布了新的文献求助10
9秒前
10秒前
lulu完成签到 ,获得积分10
11秒前
11秒前
哈哈哈哈哈完成签到,获得积分10
11秒前
李健应助孙梦阳采纳,获得10
11秒前
优雅妙松完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798