Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102721-102721 被引量:40
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流云发布了新的文献求助10
刚刚
111111完成签到,获得积分10
刚刚
充电宝应助风中的天菱采纳,获得10
刚刚
小鱼儿完成签到,获得积分10
刚刚
wl完成签到 ,获得积分10
刚刚
细心南风发布了新的文献求助10
刚刚
八乙基环辛四烯完成签到,获得积分10
1秒前
1秒前
1秒前
为神指路完成签到,获得积分10
1秒前
eeven完成签到 ,获得积分10
1秒前
研友_xnEOX8完成签到,获得积分10
1秒前
呆桃发布了新的文献求助10
2秒前
he大海贼完成签到,获得积分10
2秒前
吴小根发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
小北发布了新的文献求助30
2秒前
自觉雨文发布了新的文献求助10
2秒前
嘤嘤完成签到,获得积分10
3秒前
木香完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
5秒前
一投就中发布了新的文献求助10
5秒前
现代的垣完成签到,获得积分10
5秒前
deefeffe完成签到,获得积分10
5秒前
瓜农完成签到,获得积分10
5秒前
Ankh完成签到,获得积分10
5秒前
乎乎完成签到 ,获得积分10
6秒前
爆米花应助我们的交集采纳,获得10
6秒前
研友_xnEOX8发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
laallaall发布了新的文献求助10
7秒前
gao发布了新的文献求助10
8秒前
kiminonawa应助wm t采纳,获得20
8秒前
Cuisine完成签到 ,获得积分10
8秒前
9秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297