亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Two-Stage Multi-view Low-Rank Sparse Subspace Clustering Approach to Explore the Relationship Between Brain Function and Structure

计算机科学 秩(图论) 代表(政治) 聚类分析 子空间拓扑 稀疏逼近 模式识别(心理学) 功能(生物学) 人工智能 脑功能 过程(计算) 噪音(视频) 机器学习 数据挖掘 图像(数学) 数学 神经科学 心理学 组合数学 操作系统 政治 生物 法学 进化生物学 政治学
作者
Shu Zhang,Yanqing Kang,Sigang Yu,Jinru Wu,Enze Shi,Ruoyang Wang,Zhibin He,Lei Du,Tuo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 191-200
标识
DOI:10.1007/978-3-031-21014-3_20
摘要

Understanding the relationship between brain function and structure is vital important in the field of brain image analysis. It elucidates the working mechanism of the brain, which will contribute to better understand the brain and simulate the brain-like system. Extensive efforts have been made on this topic, but still far from the satisfactory. The major difficulties are at least two aspects. One is the huge individual difference among the subjects, which makes it hard to obtain stable results at groupwise level, e.g., noise signals can significantly affect the exploring process. The other one is the huge difference between functional and structural features of the brain, both in their pattern and size, which are very different. To alleviate the above problems, in this paper, we propose a two-stage multi-view low-rank sparse subspace clustering (Two-stage MLRSSC) method to jointly study the relationship between brain function and structure and identify the common regions of brain function and structure. The major innovation of proposed Two-stage MLRSSC is that comparable features of brain function and structure can be effectively extracted from low-rank sparse representation, and results are further improved the stability by two-stage strategy. Finally, groupwise-based stable functional and structural common regions are identified for better understanding the relationship. Experimental results shed new ways to explore the brain function and structure, new insights are observed and discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏幕遮发布了新的文献求助10
3秒前
9秒前
joysa完成签到,获得积分10
9秒前
顺心的外套完成签到,获得积分10
10秒前
12秒前
14秒前
111完成签到 ,获得积分10
14秒前
龚广山完成签到,获得积分10
15秒前
逆光完成签到 ,获得积分10
18秒前
shuiyi发布了新的文献求助10
19秒前
怕黑钢笔完成签到 ,获得积分10
24秒前
郭志成完成签到 ,获得积分10
30秒前
库茨库茨完成签到,获得积分10
32秒前
vetzlk完成签到 ,获得积分10
34秒前
李昕123完成签到 ,获得积分10
35秒前
唠叨的逍遥完成签到,获得积分10
36秒前
42秒前
666发布了新的文献求助10
47秒前
大模型应助yuanyuan采纳,获得10
49秒前
bkagyin应助666采纳,获得10
53秒前
ding应助hhh采纳,获得10
1分钟前
1分钟前
1分钟前
Hello应助健忘的板凳采纳,获得10
1分钟前
xuanxuan发布了新的文献求助10
1分钟前
1分钟前
pyh01完成签到 ,获得积分10
1分钟前
万能图书馆应助xuanxuan采纳,获得10
1分钟前
健忘的板凳完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
我必做出来完成签到,获得积分10
1分钟前
科研通AI6应助烂漫向卉采纳,获得30
1分钟前
小蘑菇应助alex采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898