A Novel Two-Stage Multi-view Low-Rank Sparse Subspace Clustering Approach to Explore the Relationship Between Brain Function and Structure

计算机科学 秩(图论) 代表(政治) 聚类分析 子空间拓扑 稀疏逼近 模式识别(心理学) 功能(生物学) 人工智能 脑功能 过程(计算) 噪音(视频) 机器学习 数据挖掘 图像(数学) 数学 神经科学 心理学 组合数学 操作系统 政治 生物 法学 进化生物学 政治学
作者
Shu Zhang,Yanqing Kang,Sigang Yu,Jinru Wu,Enze Shi,Ruoyang Wang,Zhibin He,Lei Du,Tuo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 191-200
标识
DOI:10.1007/978-3-031-21014-3_20
摘要

Understanding the relationship between brain function and structure is vital important in the field of brain image analysis. It elucidates the working mechanism of the brain, which will contribute to better understand the brain and simulate the brain-like system. Extensive efforts have been made on this topic, but still far from the satisfactory. The major difficulties are at least two aspects. One is the huge individual difference among the subjects, which makes it hard to obtain stable results at groupwise level, e.g., noise signals can significantly affect the exploring process. The other one is the huge difference between functional and structural features of the brain, both in their pattern and size, which are very different. To alleviate the above problems, in this paper, we propose a two-stage multi-view low-rank sparse subspace clustering (Two-stage MLRSSC) method to jointly study the relationship between brain function and structure and identify the common regions of brain function and structure. The major innovation of proposed Two-stage MLRSSC is that comparable features of brain function and structure can be effectively extracted from low-rank sparse representation, and results are further improved the stability by two-stage strategy. Finally, groupwise-based stable functional and structural common regions are identified for better understanding the relationship. Experimental results shed new ways to explore the brain function and structure, new insights are observed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
受伤的水瑶完成签到,获得积分10
1秒前
巩泓辰完成签到,获得积分10
1秒前
宋宇骐完成签到,获得积分10
2秒前
小瑞完成签到 ,获得积分10
2秒前
ZOE应助白桃味的夏采纳,获得20
2秒前
AAA发布了新的文献求助10
3秒前
3秒前
zgdzhj发布了新的文献求助10
4秒前
顺利雁桃发布了新的文献求助10
4秒前
5秒前
cell发布了新的文献求助10
5秒前
今后应助青塘龙仔采纳,获得10
5秒前
5秒前
Orange应助青塘龙仔采纳,获得10
5秒前
5秒前
zwq发布了新的文献求助10
5秒前
科研小垃圾完成签到,获得积分10
5秒前
香蕉觅云应助青塘龙仔采纳,获得10
5秒前
5秒前
Lucas应助青塘龙仔采纳,获得10
5秒前
bkagyin应助青塘龙仔采纳,获得10
5秒前
所所应助青塘龙仔采纳,获得10
5秒前
李健应助青塘龙仔采纳,获得10
5秒前
桐桐应助栖木采纳,获得10
6秒前
7秒前
解安珊完成签到,获得积分10
7秒前
干净的迎荷完成签到,获得积分10
8秒前
若初拾光发布了新的文献求助10
8秒前
蚂蚁完成签到,获得积分10
8秒前
鸿鹄完成签到,获得积分20
8秒前
巴图鲁完成签到,获得积分10
8秒前
8秒前
孤独寻云完成签到,获得积分10
8秒前
chennx发布了新的文献求助10
10秒前
现代的岩完成签到,获得积分10
10秒前
李Li完成签到,获得积分10
12秒前
乐只完成签到,获得积分10
12秒前
充电宝应助鸿鹄采纳,获得10
12秒前
十三发布了新的文献求助10
13秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907