A Novel Two-Stage Multi-view Low-Rank Sparse Subspace Clustering Approach to Explore the Relationship Between Brain Function and Structure

计算机科学 秩(图论) 代表(政治) 聚类分析 子空间拓扑 稀疏逼近 模式识别(心理学) 功能(生物学) 人工智能 脑功能 过程(计算) 噪音(视频) 机器学习 数据挖掘 图像(数学) 数学 神经科学 心理学 组合数学 操作系统 政治 生物 法学 进化生物学 政治学
作者
Shu Zhang,Yanqing Kang,Sigang Yu,Jinru Wu,Enze Shi,Ruoyang Wang,Zhibin He,Lei Du,Tuo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 191-200
标识
DOI:10.1007/978-3-031-21014-3_20
摘要

Understanding the relationship between brain function and structure is vital important in the field of brain image analysis. It elucidates the working mechanism of the brain, which will contribute to better understand the brain and simulate the brain-like system. Extensive efforts have been made on this topic, but still far from the satisfactory. The major difficulties are at least two aspects. One is the huge individual difference among the subjects, which makes it hard to obtain stable results at groupwise level, e.g., noise signals can significantly affect the exploring process. The other one is the huge difference between functional and structural features of the brain, both in their pattern and size, which are very different. To alleviate the above problems, in this paper, we propose a two-stage multi-view low-rank sparse subspace clustering (Two-stage MLRSSC) method to jointly study the relationship between brain function and structure and identify the common regions of brain function and structure. The major innovation of proposed Two-stage MLRSSC is that comparable features of brain function and structure can be effectively extracted from low-rank sparse representation, and results are further improved the stability by two-stage strategy. Finally, groupwise-based stable functional and structural common regions are identified for better understanding the relationship. Experimental results shed new ways to explore the brain function and structure, new insights are observed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
合适靖儿完成签到 ,获得积分10
1秒前
ww完成签到,获得积分10
3秒前
zhikaiyici应助科研通管家采纳,获得10
4秒前
4秒前
InfoNinja应助科研通管家采纳,获得30
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
乐乐乐乐乐乐应助菜狗采纳,获得10
5秒前
6秒前
苏鱼完成签到 ,获得积分10
8秒前
啾啾发布了新的文献求助10
9秒前
9秒前
小虎完成签到,获得积分10
14秒前
14秒前
田様应助123采纳,获得10
16秒前
海带完成签到 ,获得积分10
16秒前
李爱国应助林克采纳,获得10
17秒前
温暖果汁发布了新的文献求助10
17秒前
18秒前
这几个字真的有十个字完成签到,获得积分10
18秒前
18秒前
啾啾完成签到,获得积分10
19秒前
21秒前
21秒前
22秒前
23秒前
乐乐应助呱呱采纳,获得10
23秒前
24秒前
22发布了新的文献求助10
25秒前
田様应助ste11ar采纳,获得20
26秒前
科目三应助林克采纳,获得10
26秒前
27秒前
尾巴发布了新的文献求助10
28秒前
天天快乐应助温暖果汁采纳,获得10
29秒前
Ava应助wjw采纳,获得10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905