A Novel Two-Stage Multi-view Low-Rank Sparse Subspace Clustering Approach to Explore the Relationship Between Brain Function and Structure

计算机科学 秩(图论) 代表(政治) 聚类分析 子空间拓扑 稀疏逼近 模式识别(心理学) 功能(生物学) 人工智能 脑功能 过程(计算) 噪音(视频) 机器学习 数据挖掘 图像(数学) 数学 神经科学 心理学 组合数学 操作系统 政治 生物 法学 进化生物学 政治学
作者
Shu Zhang,Yanqing Kang,Sigang Yu,Jinru Wu,Enze Shi,Ruoyang Wang,Zhibin He,Lei Du,Tuo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 191-200
标识
DOI:10.1007/978-3-031-21014-3_20
摘要

Understanding the relationship between brain function and structure is vital important in the field of brain image analysis. It elucidates the working mechanism of the brain, which will contribute to better understand the brain and simulate the brain-like system. Extensive efforts have been made on this topic, but still far from the satisfactory. The major difficulties are at least two aspects. One is the huge individual difference among the subjects, which makes it hard to obtain stable results at groupwise level, e.g., noise signals can significantly affect the exploring process. The other one is the huge difference between functional and structural features of the brain, both in their pattern and size, which are very different. To alleviate the above problems, in this paper, we propose a two-stage multi-view low-rank sparse subspace clustering (Two-stage MLRSSC) method to jointly study the relationship between brain function and structure and identify the common regions of brain function and structure. The major innovation of proposed Two-stage MLRSSC is that comparable features of brain function and structure can be effectively extracted from low-rank sparse representation, and results are further improved the stability by two-stage strategy. Finally, groupwise-based stable functional and structural common regions are identified for better understanding the relationship. Experimental results shed new ways to explore the brain function and structure, new insights are observed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿珊完成签到,获得积分10
1秒前
Ki_Ayasato发布了新的文献求助150
2秒前
大模型应助北夏采纳,获得10
3秒前
cuber完成签到 ,获得积分10
4秒前
4秒前
XXJ发布了新的文献求助10
5秒前
科目三应助桀桀桀采纳,获得10
5秒前
shimly0101xx完成签到,获得积分10
7秒前
7秒前
Rondab应助好滴捏采纳,获得10
7秒前
泡泡鱼完成签到 ,获得积分10
8秒前
9秒前
10秒前
儒雅涵易完成签到 ,获得积分10
10秒前
11秒前
幽默的绣连完成签到,获得积分20
12秒前
Muhammad发布了新的文献求助10
13秒前
lzx发布了新的文献求助10
13秒前
congenialboy发布了新的文献求助10
13秒前
爆米花应助XXJ采纳,获得10
14秒前
张雯思发布了新的文献求助10
15秒前
15秒前
Lucas应助精明怜南采纳,获得10
16秒前
17秒前
派大星发布了新的文献求助30
19秒前
wterry26发布了新的文献求助10
21秒前
彭于晏应助学术渣渣采纳,获得30
21秒前
刘佳琦19947完成签到,获得积分10
22秒前
Bio应助烂漫的静枫采纳,获得60
22秒前
恋雅颖月应助congenialboy采纳,获得10
22秒前
Xylah_Rebecca发布了新的文献求助10
23秒前
苏苏发布了新的文献求助10
26秒前
wterry26完成签到,获得积分10
28秒前
派大星完成签到,获得积分10
29秒前
冷笑完成签到,获得积分10
29秒前
30秒前
rynchee完成签到 ,获得积分0
30秒前
烂漫的静枫完成签到,获得积分10
31秒前
顾矜应助lzx采纳,获得10
31秒前
想人陪的烤鸡完成签到,获得积分20
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176