A Novel Two-Stage Multi-view Low-Rank Sparse Subspace Clustering Approach to Explore the Relationship Between Brain Function and Structure

计算机科学 秩(图论) 代表(政治) 聚类分析 子空间拓扑 稀疏逼近 模式识别(心理学) 功能(生物学) 人工智能 脑功能 过程(计算) 噪音(视频) 机器学习 数据挖掘 图像(数学) 数学 神经科学 心理学 组合数学 操作系统 政治 生物 法学 进化生物学 政治学
作者
Shu Zhang,Yanqing Kang,Sigang Yu,Jinru Wu,Enze Shi,Ruoyang Wang,Zhibin He,Lei Du,Tuo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 191-200
标识
DOI:10.1007/978-3-031-21014-3_20
摘要

Understanding the relationship between brain function and structure is vital important in the field of brain image analysis. It elucidates the working mechanism of the brain, which will contribute to better understand the brain and simulate the brain-like system. Extensive efforts have been made on this topic, but still far from the satisfactory. The major difficulties are at least two aspects. One is the huge individual difference among the subjects, which makes it hard to obtain stable results at groupwise level, e.g., noise signals can significantly affect the exploring process. The other one is the huge difference between functional and structural features of the brain, both in their pattern and size, which are very different. To alleviate the above problems, in this paper, we propose a two-stage multi-view low-rank sparse subspace clustering (Two-stage MLRSSC) method to jointly study the relationship between brain function and structure and identify the common regions of brain function and structure. The major innovation of proposed Two-stage MLRSSC is that comparable features of brain function and structure can be effectively extracted from low-rank sparse representation, and results are further improved the stability by two-stage strategy. Finally, groupwise-based stable functional and structural common regions are identified for better understanding the relationship. Experimental results shed new ways to explore the brain function and structure, new insights are observed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情芷荷发布了新的文献求助10
2秒前
random完成签到,获得积分10
3秒前
3秒前
果果瑞宁完成签到,获得积分10
3秒前
4秒前
机智小虾米完成签到,获得积分20
4秒前
goldenfleece完成签到,获得积分10
5秒前
科研通AI2S应助学者采纳,获得10
5秒前
小杨完成签到,获得积分10
6秒前
sutharsons应助科研通管家采纳,获得30
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得30
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Eric_Lee2000应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
王子完成签到,获得积分10
8秒前
李繁蕊发布了新的文献求助10
9秒前
诚心的大碗应助明理念桃采纳,获得20
9秒前
10秒前
meng完成签到,获得积分10
10秒前
学者完成签到,获得积分10
10秒前
英俊的铭应助愉快盼曼采纳,获得10
11秒前
11秒前
小媛完成签到 ,获得积分10
12秒前
学术小白完成签到,获得积分20
12秒前
赘婿应助xiaomeng采纳,获得10
12秒前
Khr1stINK发布了新的文献求助10
12秒前
清新的苑博完成签到,获得积分10
12秒前
13秒前
果果瑞宁发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808