A Novel Two-Stage Multi-view Low-Rank Sparse Subspace Clustering Approach to Explore the Relationship Between Brain Function and Structure

计算机科学 秩(图论) 代表(政治) 聚类分析 子空间拓扑 稀疏逼近 模式识别(心理学) 功能(生物学) 人工智能 脑功能 过程(计算) 噪音(视频) 机器学习 数据挖掘 图像(数学) 数学 神经科学 心理学 组合数学 操作系统 政治 生物 法学 进化生物学 政治学
作者
Shu Zhang,Yanqing Kang,Sigang Yu,Jinru Wu,Enze Shi,Ruoyang Wang,Zhibin He,Lei Du,Tuo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 191-200
标识
DOI:10.1007/978-3-031-21014-3_20
摘要

Understanding the relationship between brain function and structure is vital important in the field of brain image analysis. It elucidates the working mechanism of the brain, which will contribute to better understand the brain and simulate the brain-like system. Extensive efforts have been made on this topic, but still far from the satisfactory. The major difficulties are at least two aspects. One is the huge individual difference among the subjects, which makes it hard to obtain stable results at groupwise level, e.g., noise signals can significantly affect the exploring process. The other one is the huge difference between functional and structural features of the brain, both in their pattern and size, which are very different. To alleviate the above problems, in this paper, we propose a two-stage multi-view low-rank sparse subspace clustering (Two-stage MLRSSC) method to jointly study the relationship between brain function and structure and identify the common regions of brain function and structure. The major innovation of proposed Two-stage MLRSSC is that comparable features of brain function and structure can be effectively extracted from low-rank sparse representation, and results are further improved the stability by two-stage strategy. Finally, groupwise-based stable functional and structural common regions are identified for better understanding the relationship. Experimental results shed new ways to explore the brain function and structure, new insights are observed and discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清脆荟关注了科研通微信公众号
刚刚
羊羊羊完成签到,获得积分10
刚刚
飞机完成签到,获得积分10
刚刚
今后应助郭佳其采纳,获得10
1秒前
BowieHuang应助deniroming采纳,获得10
1秒前
saikun完成签到,获得积分10
2秒前
noyal发布了新的文献求助10
2秒前
husthenry发布了新的文献求助10
2秒前
2秒前
俊逸青柏发布了新的文献求助10
3秒前
3秒前
1255475177发布了新的文献求助10
3秒前
小巧元容完成签到,获得积分10
3秒前
3秒前
Kenny发布了新的文献求助10
3秒前
小蘑菇应助小灰灰采纳,获得10
3秒前
3秒前
3秒前
3秒前
123完成签到,获得积分20
4秒前
天天快乐应助kk采纳,获得10
4秒前
阮煜城完成签到,获得积分10
4秒前
东方三问发布了新的文献求助10
4秒前
小蘑菇应助苗儿采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Zlamb发布了新的文献求助10
6秒前
大模型应助balalala采纳,获得10
6秒前
威武的夜绿完成签到,获得积分10
6秒前
火星上立果完成签到,获得积分10
6秒前
汪宇发布了新的文献求助10
6秒前
上官若男应助想不到吧采纳,获得10
6秒前
6秒前
DDda应助Chennx采纳,获得10
7秒前
逝水发布了新的文献求助10
7秒前
阮煜城发布了新的文献求助10
8秒前
8秒前
赘婿应助笨笨的映阳采纳,获得10
8秒前
8秒前
突突突兔完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710194
求助须知:如何正确求助?哪些是违规求助? 5198067
关于积分的说明 15259712
捐赠科研通 4862771
什么是DOI,文献DOI怎么找? 2610309
邀请新用户注册赠送积分活动 1560657
关于科研通互助平台的介绍 1518334