重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Novel Two-Stage Multi-view Low-Rank Sparse Subspace Clustering Approach to Explore the Relationship Between Brain Function and Structure

计算机科学 秩(图论) 代表(政治) 聚类分析 子空间拓扑 稀疏逼近 模式识别(心理学) 功能(生物学) 人工智能 脑功能 过程(计算) 噪音(视频) 机器学习 数据挖掘 图像(数学) 数学 神经科学 心理学 组合数学 操作系统 政治 生物 法学 进化生物学 政治学
作者
Shu Zhang,Yanqing Kang,Sigang Yu,Jinru Wu,Enze Shi,Ruoyang Wang,Zhibin He,Lei Du,Tuo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 191-200
标识
DOI:10.1007/978-3-031-21014-3_20
摘要

Understanding the relationship between brain function and structure is vital important in the field of brain image analysis. It elucidates the working mechanism of the brain, which will contribute to better understand the brain and simulate the brain-like system. Extensive efforts have been made on this topic, but still far from the satisfactory. The major difficulties are at least two aspects. One is the huge individual difference among the subjects, which makes it hard to obtain stable results at groupwise level, e.g., noise signals can significantly affect the exploring process. The other one is the huge difference between functional and structural features of the brain, both in their pattern and size, which are very different. To alleviate the above problems, in this paper, we propose a two-stage multi-view low-rank sparse subspace clustering (Two-stage MLRSSC) method to jointly study the relationship between brain function and structure and identify the common regions of brain function and structure. The major innovation of proposed Two-stage MLRSSC is that comparable features of brain function and structure can be effectively extracted from low-rank sparse representation, and results are further improved the stability by two-stage strategy. Finally, groupwise-based stable functional and structural common regions are identified for better understanding the relationship. Experimental results shed new ways to explore the brain function and structure, new insights are observed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的诗桃应助Chaimengdi采纳,获得10
刚刚
年糕111发布了新的文献求助10
1秒前
香蕉觅云应助dsl采纳,获得10
1秒前
1秒前
2秒前
砚草难书发布了新的文献求助10
2秒前
2秒前
Mmmmm完成签到,获得积分10
2秒前
meta发布了新的文献求助10
2秒前
呵呵呵完成签到,获得积分10
2秒前
电池博士发布了新的文献求助10
3秒前
3秒前
顾矜应助学习行动派采纳,获得10
3秒前
3秒前
噗噗应助阿巴采纳,获得10
3秒前
nan发布了新的文献求助10
3秒前
3秒前
欣慰猕猴桃完成签到,获得积分10
3秒前
4秒前
L_发布了新的文献求助10
4秒前
4秒前
李爱国应助thesilence采纳,获得10
5秒前
5秒前
5秒前
5秒前
BY0131发布了新的文献求助10
5秒前
健忘的灵凡完成签到,获得积分10
5秒前
俏皮的钻石完成签到,获得积分10
5秒前
6秒前
深情安青应助maybe豪采纳,获得10
6秒前
王姗and帅白完成签到,获得积分10
6秒前
华仔应助GHJ采纳,获得10
6秒前
Dylan完成签到,获得积分10
7秒前
7秒前
wenx完成签到,获得积分10
7秒前
故意的冰岚完成签到,获得积分20
7秒前
搜集达人应助年糕111采纳,获得10
7秒前
YY完成签到,获得积分0
7秒前
7秒前
幽默尔蓝发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567