Optimized face detector-based intelligent face mask detection model in IoT using deep learning approach

计算机科学 人工智能 启发式 深度学习 鉴定(生物学) 机器学习 探测器 人脸检测 面子(社会学概念) 面部识别系统 数据挖掘 模式识别(心理学) 生物 电信 社会学 植物 社会科学
作者
Raghda Awad Shaban Naseri,Ayça Kurnaz,Hameed Mutlag Farhan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:134: 109933-109933 被引量:12
标识
DOI:10.1016/j.asoc.2022.109933
摘要

The growth of the “Internet of Medical Things (IoMT)” allows for the collection and processing of data in healthcare systems. At the same time, it is challenging to study the requirements of public health prevention. Here, mask-wearing is considered an efficient preventive measure for avoiding virus transfer. Hence, it is necessary to implement an automated mask identification model to prevent public epidemics. The main scope of the proposed method is to design a face mask detection model with IoT using a “Single Shot Multi-box Detector (SSD)” and a hybrid deep learning method. The novelty of the proposed model is that the enhancement made in the face detection and face classification with the developed ASMFO by optimizing the parameters like the threshold in SSD, steps per execution in ResNet, and learning rate in MobileNet, which makes it more efficient and to perform better the conventional models. Here, the parameter optimization is carried out using a hybrid optimization algorithm named Adaptive Sailfish Moth Flame Optimization (ASMFO). Then, the detected face images are given to the hybrid approach named Hybrid ResMobileNet (HResMobileNet)-based classification, where the parameters are tuned using the same ASMFO algorithm for achieving accurate mask detection results. However, the suggested mask identification model with IoT based on three standard datasets is compared with the conventional meta-heuristic algorithms and existing classifiers with various measures. Thus, the experimental analysis is conducted to analyze the effectiveness of the proposed framework over different meta-heuristic algorithms and existing classifiers. The implemented ASMFO-HResMobileNet provides 18.57%, 15.67%, 17.56%, 16.24%, and 19.2% elevated accuracy than SVM, CNN, VGG16-LSTM, ResNet 50, MobileNetv2, and ResNet 50-MobileNetv2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
听海发布了新的文献求助10
2秒前
2秒前
AOtaku发布了新的文献求助10
3秒前
3秒前
wu完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
一颗苹果发布了新的文献求助30
6秒前
Hello应助认真的豌豆采纳,获得10
6秒前
adgcxvjj应助韶安萱采纳,获得10
8秒前
8秒前
9秒前
FashionBoy应助苏楠采纳,获得10
9秒前
爆米花应助玛卡巴卡采纳,获得10
9秒前
ZZZ发布了新的文献求助10
10秒前
11秒前
狼啸天应助Richard采纳,获得10
11秒前
善学以致用应助AOtaku采纳,获得10
11秒前
Owen应助小马采纳,获得10
12秒前
听海发布了新的文献求助10
12秒前
高金龙完成签到 ,获得积分10
12秒前
科研通AI5应助bjbmtxy采纳,获得30
13秒前
李伟发布了新的文献求助10
13秒前
六六大顺完成签到,获得积分10
13秒前
小白完成签到 ,获得积分10
13秒前
所所应助zed采纳,获得10
13秒前
adgcxvjj应助wxyllxx采纳,获得10
15秒前
15秒前
Re完成签到,获得积分10
15秒前
科研通AI2S应助dhbt采纳,获得10
17秒前
慕华完成签到 ,获得积分10
17秒前
太渊发布了新的文献求助10
18秒前
19秒前
要减肥的乐双完成签到 ,获得积分10
19秒前
搜集达人应助核桃采纳,获得10
22秒前
23秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669