Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach

抑郁症状 睡眠(系统调用) 萧条(经济学) 心理学 老年学 临床心理学 医学 精神科 计算机科学 认知 操作系统 宏观经济学 经济
作者
Stephania Ruth Basílio Silva Gomes,Malcolm von Schantz,Mário André Leocadio-Miguel
出处
期刊:Sleep Medicine [Elsevier]
卷期号:102: 123-131 被引量:13
标识
DOI:10.1016/j.sleep.2023.01.002
摘要

Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. We used the National Health and Nutrition Examination Survey (NHANES) 2015–2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
好吗好的应助ZhenyuShang采纳,获得10
1秒前
爱吃糖的虎纹猫咪完成签到,获得积分10
1秒前
科研通AI6应助chai采纳,获得10
1秒前
梁跃耀发布了新的文献求助20
1秒前
1秒前
duduying发布了新的文献求助30
2秒前
我是老大应助尧肙采纳,获得10
2秒前
大力沛萍发布了新的文献求助10
2秒前
大模型应助怡然百川采纳,获得10
2秒前
WenTang完成签到,获得积分10
2秒前
狂野善愁发布了新的文献求助10
3秒前
fjaa发布了新的文献求助10
3秒前
俊逸芸遥完成签到,获得积分10
3秒前
不吃芒果发布了新的文献求助10
3秒前
老福贵儿应助小雨转晴采纳,获得10
3秒前
3秒前
小蘑菇应助sxx采纳,获得10
3秒前
3秒前
喵喵发布了新的文献求助10
3秒前
3秒前
3秒前
小蘑菇应助lululala采纳,获得10
3秒前
聪慧丹寒完成签到,获得积分10
4秒前
4秒前
宝贝发布了新的文献求助10
4秒前
科研通AI6应助相忘于江湖采纳,获得20
4秒前
5秒前
tgene发布了新的文献求助10
5秒前
文心理完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助xh采纳,获得10
5秒前
我不李姐完成签到,获得积分10
5秒前
尊敬的雪兰完成签到,获得积分20
6秒前
6秒前
KeYang完成签到,获得积分10
6秒前
6秒前
文静的绯完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271