Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach

抑郁症状 睡眠(系统调用) 萧条(经济学) 心理学 老年学 临床心理学 医学 精神科 计算机科学 认知 操作系统 宏观经济学 经济
作者
Stephania Ruth Basílio Silva Gomes,Malcolm von Schantz,Mário André Leocadio-Miguel
出处
期刊:Sleep Medicine [Elsevier]
卷期号:102: 123-131 被引量:13
标识
DOI:10.1016/j.sleep.2023.01.002
摘要

Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. We used the National Health and Nutrition Examination Survey (NHANES) 2015–2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyy完成签到,获得积分10
刚刚
Niki发布了新的文献求助20
刚刚
完美世界应助炙热果汁采纳,获得10
刚刚
螺内酯发布了新的文献求助10
刚刚
刚刚
巧克力完成签到,获得积分10
1秒前
1秒前
Maxwell完成签到,获得积分10
1秒前
Wen发布了新的文献求助10
1秒前
薏米发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
郭濹涵发布了新的文献求助10
2秒前
3秒前
阳光彩虹小白马关注了科研通微信公众号
3秒前
星辰大海应助QIQI采纳,获得10
3秒前
875259完成签到,获得积分10
4秒前
4秒前
ding应助恩恩天天开心采纳,获得10
4秒前
打打应助现代的糖豆采纳,获得10
4秒前
科目三应助第七个星球采纳,获得10
4秒前
Sue完成签到 ,获得积分10
4秒前
英姑应助HEANZ采纳,获得10
4秒前
梧桐完成签到,获得积分10
4秒前
盒子完成签到,获得积分10
4秒前
Yuki发布了新的文献求助10
5秒前
tangzanwayne发布了新的文献求助10
5秒前
睡觉大王完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
精明的飞槐完成签到,获得积分10
6秒前
YUE完成签到,获得积分10
6秒前
xyy发布了新的文献求助10
6秒前
7秒前
7秒前
小二郎应助qiaoyun采纳,获得10
7秒前
shouyi886发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894