Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach

抑郁症状 睡眠(系统调用) 萧条(经济学) 心理学 老年学 临床心理学 医学 精神科 计算机科学 认知 操作系统 宏观经济学 经济
作者
Stephania Ruth Basílio Silva Gomes,Malcolm von Schantz,Mário André Leocadio-Miguel
出处
期刊:Sleep Medicine [Elsevier]
卷期号:102: 123-131 被引量:13
标识
DOI:10.1016/j.sleep.2023.01.002
摘要

Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. We used the National Health and Nutrition Examination Survey (NHANES) 2015–2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅。发布了新的文献求助10
刚刚
gg关闭了gg文献求助
刚刚
天天应助bai采纳,获得30
刚刚
量子星尘发布了新的文献求助10
2秒前
bkagyin应助lll采纳,获得30
2秒前
HOXXXiii发布了新的文献求助10
2秒前
cyw发布了新的文献求助10
2秒前
ding应助万荼巳蕊采纳,获得10
2秒前
3秒前
3秒前
大个应助眼睛大芙采纳,获得10
3秒前
3秒前
华仔应助小明采纳,获得10
3秒前
4秒前
5秒前
5秒前
5秒前
善学以致用应助keanu采纳,获得10
5秒前
6秒前
小闵完成签到,获得积分10
6秒前
万能图书馆应助Ayn采纳,获得10
7秒前
大模型应助zhangmazi采纳,获得10
7秒前
在水一方应助JHY采纳,获得10
8秒前
8秒前
传奇3应助奶茶采纳,获得10
8秒前
洁净的敏发布了新的文献求助30
8秒前
xjx完成签到,获得积分10
8秒前
斯文败类应助Lxxx采纳,获得10
8秒前
赵淑敏完成签到,获得积分10
9秒前
9秒前
lenetivy发布了新的文献求助10
9秒前
墨白完成签到,获得积分10
9秒前
科研人完成签到 ,获得积分10
9秒前
zchchem发布了新的文献求助10
9秒前
小郭子应助现代水卉采纳,获得10
9秒前
yannnis完成签到 ,获得积分20
9秒前
壮观以松发布了新的文献求助10
10秒前
qq发布了新的文献求助10
10秒前
科研头疼完成签到,获得积分10
10秒前
fufu发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727988
求助须知:如何正确求助?哪些是违规求助? 5310720
关于积分的说明 15312703
捐赠科研通 4875267
什么是DOI,文献DOI怎么找? 2618674
邀请新用户注册赠送积分活动 1568332
关于科研通互助平台的介绍 1524966