Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach

抑郁症状 睡眠(系统调用) 萧条(经济学) 心理学 老年学 临床心理学 医学 精神科 计算机科学 认知 宏观经济学 经济 操作系统
作者
Stephania Ruth Basílio Silva Gomes,Malcolm von Schantz,Mário André Leocadio-Miguel
出处
期刊:Sleep Medicine [Elsevier]
卷期号:102: 123-131 被引量:12
标识
DOI:10.1016/j.sleep.2023.01.002
摘要

Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. We used the National Health and Nutrition Examination Survey (NHANES) 2015–2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cyrus发布了新的文献求助10
刚刚
辉辉028完成签到 ,获得积分20
刚刚
1秒前
沉默乌发布了新的文献求助10
2秒前
yyy完成签到,获得积分10
4秒前
爆米花应助海光采纳,获得10
5秒前
boyue发布了新的文献求助10
5秒前
英俊的觅波完成签到,获得积分10
5秒前
Zpk发布了新的文献求助10
6秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
happyccch完成签到 ,获得积分0
7秒前
我是老大应助诉与山风听采纳,获得10
8秒前
科研通AI2S应助书生书真生采纳,获得10
8秒前
袁裘发布了新的文献求助10
9秒前
朴素的冷风完成签到,获得积分10
9秒前
Hello应助oo采纳,获得10
9秒前
Leeon完成签到,获得积分10
9秒前
mhl11应助端庄谷南采纳,获得10
10秒前
一百八发布了新的文献求助10
10秒前
will完成签到 ,获得积分10
10秒前
11秒前
夜之枫发布了新的文献求助10
11秒前
asdfg应助晚意采纳,获得10
11秒前
12秒前
wang完成签到,获得积分20
12秒前
Orange应助Leo采纳,获得10
13秒前
13秒前
无花果应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
yoke完成签到,获得积分10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
坦率耳机应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
boyue完成签到,获得积分20
14秒前
高分求助中
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
Artificial Intelligence: Foundations of ComputationalAgents, 3rd Edition Solution Manual and Instructor Resources 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308081
求助须知:如何正确求助?哪些是违规求助? 2941598
关于积分的说明 8504517
捐赠科研通 2616249
什么是DOI,文献DOI怎么找? 1429510
科研通“疑难数据库(出版商)”最低求助积分说明 663787
邀请新用户注册赠送积分活动 648720