Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach

抑郁症状 睡眠(系统调用) 萧条(经济学) 心理学 老年学 临床心理学 医学 精神科 计算机科学 认知 操作系统 宏观经济学 经济
作者
Stephania Ruth Basílio Silva Gomes,Malcolm von Schantz,Mário André Leocadio-Miguel
出处
期刊:Sleep Medicine [Elsevier]
卷期号:102: 123-131 被引量:13
标识
DOI:10.1016/j.sleep.2023.01.002
摘要

Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. We used the National Health and Nutrition Examination Survey (NHANES) 2015–2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
段asd发布了新的文献求助10
2秒前
2秒前
彭于晏应助末小皮采纳,获得50
2秒前
新时代好青年完成签到,获得积分10
3秒前
Jasper应助读书的时候采纳,获得10
3秒前
baiquanci发布了新的文献求助10
4秒前
sunc发布了新的文献求助20
4秒前
就是嘀咕发布了新的文献求助10
5秒前
Synan发布了新的文献求助30
6秒前
酷波er应助lllppp采纳,获得10
6秒前
王羲之发布了新的文献求助10
6秒前
paulhsy发布了新的文献求助10
7秒前
迷人不凡完成签到,获得积分10
7秒前
vv完成签到,获得积分20
7秒前
8秒前
求助人员应助完美的从波采纳,获得30
8秒前
8秒前
Ariana发布了新的文献求助10
9秒前
9秒前
小蘑菇应助WGS采纳,获得10
10秒前
guan完成签到,获得积分10
10秒前
结实大白完成签到,获得积分10
10秒前
我是老大应助晚风采纳,获得10
12秒前
hh发布了新的文献求助10
13秒前
Synan完成签到,获得积分10
13秒前
科研通AI6应助杨文彬采纳,获得10
13秒前
晴天发布了新的文献求助20
13秒前
AdeleValenta应助完美的从波采纳,获得30
13秒前
14秒前
15秒前
胡蝶完成签到 ,获得积分10
15秒前
十一月的阴天完成签到,获得积分10
16秒前
qingjiu完成签到 ,获得积分10
17秒前
wanci应助北月采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
GL发布了新的文献求助100
18秒前
ding应助豆丁采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661