Phase-separation physics underlies new theory for the resilience of patchy ecosystems

生态系统 非生物成分 生态学 空间生态学 弹性(材料科学) 环境科学 生物 物理 热力学
作者
Koen Siteur,Quan‐Xing Liu,Vivi Rottschäfer,Tjisse van der Heide,Max Rietkerk,Arjen Doelman,Christoffer Boström,Johan van de Koppel
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (2) 被引量:6
标识
DOI:10.1073/pnas.2202683120
摘要

Spatial self-organization of ecosystems into large-scale (from micron to meters) patterns is an important phenomenon in ecology, enabling organisms to cope with harsh environmental conditions and buffering ecosystem degradation. Scale-dependent feedbacks provide the predominant conceptual framework for self-organized spatial patterns, explaining regular patterns observed in, e.g., arid ecosystems or mussel beds. Here, we highlight an alternative mechanism for self-organized patterns, based on the aggregation of a biotic or abiotic species, such as herbivores, sediment, or nutrients. Using a generalized mathematical model, we demonstrate that ecosystems with aggregation-driven patterns have fundamentally different dynamics and resilience properties than ecosystems with patterns that formed through scale-dependent feedbacks. Building on the physics theory for phase-separation dynamics, we show that patchy ecosystems with aggregation patterns are more vulnerable than systems with patterns formed through scale-dependent feedbacks, especially at small spatial scales. This is because local disturbances can trigger large-scale redistribution of resources, amplifying local degradation. Finally, we show that insights from physics, by providing mechanistic understanding of the initiation of aggregation patterns and their tendency to coarsen, provide a new indicator framework to signal proximity to ecological tipping points and subsequent ecosystem degradation for this class of patchy ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
handsomecat完成签到,获得积分10
刚刚
1秒前
神勇的雅香应助gms采纳,获得10
1秒前
眯眯眼的衬衫应助cleva采纳,获得10
1秒前
激动的一手完成签到,获得积分10
1秒前
怕黑的海豚关注了科研通微信公众号
1秒前
艺玲发布了新的文献求助10
2秒前
irisjlj完成签到,获得积分10
3秒前
刘帅帅发布了新的文献求助10
3秒前
4秒前
4秒前
袅袅完成签到,获得积分10
4秒前
新的心跳发布了新的文献求助10
5秒前
wgx发布了新的文献求助10
5秒前
5秒前
DiviO_完成签到 ,获得积分10
5秒前
阳佟念真完成签到,获得积分10
5秒前
内向乞完成签到 ,获得积分10
7秒前
韭菜发布了新的文献求助10
7秒前
ludwig完成签到,获得积分10
7秒前
科研通AI5应助悦耳的冰枫采纳,获得10
8秒前
8秒前
9秒前
hqlran完成签到,获得积分10
9秒前
袅袅发布了新的文献求助10
9秒前
9秒前
爆米花应助小喵采纳,获得10
9秒前
10秒前
11秒前
xxx发布了新的文献求助10
11秒前
11秒前
胡说八道完成签到 ,获得积分10
11秒前
高兴帅哥完成签到,获得积分10
12秒前
14秒前
aslink完成签到,获得积分10
14秒前
Amon完成签到,获得积分10
14秒前
啊娴仔发布了新的文献求助10
14秒前
camellia发布了新的文献求助10
14秒前
万能图书馆应助狂野觅云采纳,获得10
14秒前
充电宝应助zino采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759