High-Fidelity Specular SVBRDF Acquisition from Flash Photographs

计算机科学 渲染(计算机图形) 计算机视觉 镜面反射 人工智能 颜色恒定性 镜面反射度 计算机图形学(图像) 图像(数学) 量子力学 物理
作者
Michael Tetzlaff
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tvcg.2023.3235277
摘要

Obtaining accurate SVBRDFs from 2D photographs of shiny, heterogeneous 3D objects is a highly sought-after goal for domains like cultural heritage archiving, where it is critical to document color appearance in high fidelity. In prior work such as the promising framework by Nam et al. [1], the problem is simplified by assuming that specular highlights exhibit symmetry and isotropy about an estimated surface normal. The present work builds on this foundation with several significant modifications. Recognizing the importance of the surface normal as an axis of symmetry, we compare nonlinear optimization for normals with a linear approximation proposed by Nam et al. and find that nonlinear optimization is superior to the linear approximation, while noting that the surface normal estimates generally have a very significant impact on the reconstructed color appearance of the object. We also examine the use of a monotonicity constraint for reflectance and develop a generalization that also enforces continuity and smoothness when optimizing continuous monotonic functions like a microfacet distribution. Finally, we explore the impact of simplifying from an arbitrary 1D basis function to a traditional parametric microfacet distribution (GGX), and we find this to be a reasonable approximation that trades some fidelity for practicality in certain applications. Both representations can be used in existing rendering architectures like game engines or online 3D viewers, while retaining accurate color appearance for fidelity-critical applications like cultural heritage or online sales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过小天鹅完成签到,获得积分10
1秒前
非常可爱发布了新的文献求助20
1秒前
eee发布了新的文献求助10
1秒前
幸福胡萝卜完成签到,获得积分10
1秒前
2秒前
科研通AI5应助琅琊为刃采纳,获得10
2秒前
2秒前
2秒前
2秒前
寒冷的奇异果完成签到,获得积分10
3秒前
hziyu发布了新的文献求助10
4秒前
4秒前
野性的南蕾完成签到,获得积分10
4秒前
毛毛哦啊发布了新的文献求助10
4秒前
zzzzzk发布了新的文献求助10
4秒前
4秒前
lalala发布了新的文献求助10
5秒前
三里墩头应助oldlee采纳,获得20
5秒前
5秒前
iNk应助西安小小朱采纳,获得10
5秒前
CodeCraft应助西安小小朱采纳,获得10
5秒前
无花果应助爱学习的小迟采纳,获得10
6秒前
哭泣的映寒完成签到 ,获得积分10
6秒前
xls完成签到,获得积分10
6秒前
6秒前
故意的傲玉应助圈圈采纳,获得10
6秒前
7秒前
522完成签到,获得积分10
7秒前
7秒前
kbj发布了新的文献求助10
7秒前
8秒前
老西瓜发布了新的文献求助10
8秒前
人各有痣完成签到,获得积分10
8秒前
后知后觉发布了新的文献求助10
8秒前
xiaoxiao发布了新的文献求助30
8秒前
8秒前
9秒前
9秒前
英姑应助哈哈呀采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672