Automated multi-modal Transformer network (AMTNet) for 3D medical images segmentation

计算机科学 人工智能 分割 变压器 图像分割 卷积神经网络 计算机视觉 增采样 模式识别(心理学) 图像(数学) 电压 工程类 电气工程
作者
Shenhai Zheng,Jiaxin Tan,Chuangbo Jiang,Laquan Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (2): 025014-025014 被引量:1
标识
DOI:10.1088/1361-6560/aca74c
摘要

Abstract Objective. Over the past years, convolutional neural networks based methods have dominated the field of medical image segmentation. But the main drawback of these methods is that they have difficulty representing long-range dependencies. Recently, the Transformer has demonstrated super performance in computer vision and has also been successfully applied to medical image segmentation because of the self-attention mechanism and long-range dependencies encoding on images. To the best of our knowledge, only a few works focus on cross-modalities of image segmentation using the Transformer. Hence, the main objective of this study was to design, propose and validate a deep learning method to extend the application of Transformer to multi-modality medical image segmentation. Approach. This paper proposes a novel automated multi-modal Transformer network termed AMTNet for 3D medical image segmentation. Especially, the network is a well-modeled U-shaped network architecture where many effective and significant changes have been made in the feature encoding, fusion, and decoding parts. The encoding part comprises 3D embedding, 3D multi-modal Transformer, and 3D Co-learn down-sampling blocks. Symmetrically, the 3D Transformer block, upsampling block, and 3D-expanding blocks are included in the decoding part. In addition, a Transformer-based adaptive channel interleaved Transformer feature fusion module is designed to fully fuse features of different modalities. Main results. We provide a comprehensive experimental analysis of the Prostate and BraTS2021 datasets. The results show that our method achieves an average DSC of 0.907 and 0.851 (0.734 for ET, 0.895 for TC, and 0.924 for WT) on these two datasets, respectively. These values show that AMTNet yielded significant improvements over the state-of-the-art segmentation networks. Significance. The proposed 3D segmentation network exploits complementary features of different modalities during the feature extraction process at multiple scales to increase the 3D feature representations and improve the segmentation efficiency. This powerful network enriches the research of the Transformer to multi-modal medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
崔博发布了新的文献求助10
刚刚
麒葩!发布了新的文献求助10
刚刚
Akim应助自觉葶采纳,获得10
刚刚
刚刚
1秒前
1秒前
富贵儿完成签到,获得积分10
1秒前
智勇双全完成签到,获得积分10
2秒前
2秒前
归尘发布了新的文献求助10
3秒前
大个应助迷你的白易采纳,获得10
3秒前
3秒前
FashionBoy应助嗯嗯采纳,获得10
3秒前
xuzj应助研友_楼灵煌采纳,获得20
4秒前
6秒前
erhan7发布了新的文献求助10
6秒前
梅花发布了新的文献求助20
7秒前
7秒前
搜集达人应助娃哈哈采纳,获得10
7秒前
pharmq发布了新的文献求助10
7秒前
7秒前
我行我素发布了新的文献求助10
7秒前
YuxiLuo完成签到,获得积分10
7秒前
杨晓毅完成签到,获得积分10
7秒前
7秒前
8秒前
yuu完成签到,获得积分10
9秒前
bonongni发布了新的文献求助10
10秒前
轩1完成签到,获得积分20
11秒前
汉堡包应助JoshuaChen采纳,获得10
11秒前
lc完成签到,获得积分10
12秒前
zy发布了新的文献求助10
12秒前
丘比特应助明明采纳,获得10
12秒前
xiiin完成签到,获得积分10
13秒前
温婉的老五完成签到,获得积分20
13秒前
13秒前
李爱国应助殷勤的雨灵采纳,获得10
14秒前
徒然草完成签到,获得积分10
14秒前
abd发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620