Automated multi-modal Transformer network (AMTNet) for 3D medical images segmentation

计算机科学 人工智能 分割 变压器 图像分割 卷积神经网络 计算机视觉 增采样 模式识别(心理学) 图像(数学) 电压 工程类 电气工程
作者
Shenhai Zheng,Jiaxin Tan,Chuangbo Jiang,Laquan Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (2): 025014-025014 被引量:1
标识
DOI:10.1088/1361-6560/aca74c
摘要

Abstract Objective. Over the past years, convolutional neural networks based methods have dominated the field of medical image segmentation. But the main drawback of these methods is that they have difficulty representing long-range dependencies. Recently, the Transformer has demonstrated super performance in computer vision and has also been successfully applied to medical image segmentation because of the self-attention mechanism and long-range dependencies encoding on images. To the best of our knowledge, only a few works focus on cross-modalities of image segmentation using the Transformer. Hence, the main objective of this study was to design, propose and validate a deep learning method to extend the application of Transformer to multi-modality medical image segmentation. Approach. This paper proposes a novel automated multi-modal Transformer network termed AMTNet for 3D medical image segmentation. Especially, the network is a well-modeled U-shaped network architecture where many effective and significant changes have been made in the feature encoding, fusion, and decoding parts. The encoding part comprises 3D embedding, 3D multi-modal Transformer, and 3D Co-learn down-sampling blocks. Symmetrically, the 3D Transformer block, upsampling block, and 3D-expanding blocks are included in the decoding part. In addition, a Transformer-based adaptive channel interleaved Transformer feature fusion module is designed to fully fuse features of different modalities. Main results. We provide a comprehensive experimental analysis of the Prostate and BraTS2021 datasets. The results show that our method achieves an average DSC of 0.907 and 0.851 (0.734 for ET, 0.895 for TC, and 0.924 for WT) on these two datasets, respectively. These values show that AMTNet yielded significant improvements over the state-of-the-art segmentation networks. Significance. The proposed 3D segmentation network exploits complementary features of different modalities during the feature extraction process at multiple scales to increase the 3D feature representations and improve the segmentation efficiency. This powerful network enriches the research of the Transformer to multi-modal medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是亲爱的小王完成签到,获得积分10
刚刚
杨一完成签到 ,获得积分10
刚刚
薛乎虚发布了新的文献求助10
1秒前
severus完成签到 ,获得积分10
2秒前
yeti完成签到,获得积分10
3秒前
稳重的秋天完成签到,获得积分20
4秒前
龘龘龘完成签到 ,获得积分10
5秒前
6秒前
叶落无痕、完成签到,获得积分10
6秒前
天天开心完成签到,获得积分10
9秒前
Sandro完成签到,获得积分10
11秒前
大牛顿完成签到,获得积分10
13秒前
bono完成签到 ,获得积分10
16秒前
科目三应助一年八篇sci采纳,获得10
17秒前
万能图书馆应助孤巷的猫采纳,获得10
19秒前
吉吉国王完成签到 ,获得积分10
20秒前
20秒前
23秒前
清爽的诗云完成签到 ,获得积分10
24秒前
tassssadar完成签到,获得积分10
24秒前
wenjian完成签到,获得积分10
25秒前
娟儿完成签到 ,获得积分10
25秒前
Ulrica完成签到,获得积分10
26秒前
满意白卉完成签到 ,获得积分10
26秒前
大脸猫完成签到 ,获得积分10
27秒前
宇老师完成签到,获得积分10
29秒前
29秒前
老实怀蝶完成签到,获得积分10
30秒前
ding应助闫132采纳,获得10
31秒前
叶子完成签到,获得积分10
32秒前
Gavin完成签到,获得积分10
32秒前
RadiantYT发布了新的文献求助10
33秒前
微生完成签到 ,获得积分10
34秒前
34秒前
36秒前
道交法完成签到,获得积分10
37秒前
xelloss完成签到,获得积分10
38秒前
38秒前
krathhong完成签到 ,获得积分10
40秒前
小幸运完成签到,获得积分10
40秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180053
求助须知:如何正确求助?哪些是违规求助? 2830388
关于积分的说明 7976619
捐赠科研通 2491970
什么是DOI,文献DOI怎么找? 1329146
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954