Age and gender differences in vertebral bone marrow adipose tissue and bone mineral density, based on MRI and quantitative CT

医学 骨矿物 定量计算机断层扫描 脂肪组织 骨髓 老化 骨密度 内科学 骨质疏松症
作者
Aihong Yu,Mingqian Huang,Ling Wang,Yong Zhang,Kai Li,Luxin Lou,Wei Liang,Glen M. Blake,Wei Deng,Xiaoguang Cheng
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:159: 110669-110669 被引量:8
标识
DOI:10.1016/j.ejrad.2022.110669
摘要

To investigate the age and gender differences in vertebral bone marrow adipose tissue (BMAT) and volumetric bone mineral density (vBMD).A total of 427 healthy adults, including 175 males (41 %) and 252 females (59 %) with an age range of 21-82 years, underwent MRI and quantitative CT examinations of the lumbar spine (L2-L4), and the corresponding BMAT and vBMD values were measured. The age-related progressions of BMAT and vBMD in men and women were evaluated and compared.In males, vertebral BMAT rose gradually throughout life, while in females, BMAT increased sharply between 41 and 60 years of age. In participants aged < 40 years, BMAT was greater in males compared to females (p ≤ 0.01), while after the age of 60, BMAT was higher in females (p < 0.05). In males, vBMD decreased gradually with age, while in females, there was a sharp decrease in vBMD after the age of 40 years. At age of 31-40 years, vBMD was higher in females (P < 0.002), while at age > 60 years, vBMD was higher in males (61-70 years, P < 0.01; > 70 years, P = 0.02).We found significant age and gender differences in lumbar BMAT and vBMD. These findings will help to improve our understanding of the interaction between bone marrow fat content and bone mineral density in the ageing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱朱完成签到,获得积分20
1秒前
1秒前
空里流霜不觉飞完成签到,获得积分10
1秒前
一颗煤炭完成签到 ,获得积分10
2秒前
肥而不腻的羚羊完成签到,获得积分10
2秒前
小辣鸡糖二完成签到,获得积分10
2秒前
不想说完成签到,获得积分10
2秒前
2秒前
mo完成签到,获得积分10
3秒前
3秒前
3秒前
共享精神应助丫丫采纳,获得30
3秒前
喜欢皮卡丘的贾同学完成签到,获得积分10
3秒前
4秒前
DQ完成签到,获得积分10
4秒前
bxll完成签到 ,获得积分10
4秒前
4秒前
5秒前
dahaoren关注了科研通微信公众号
5秒前
5秒前
6秒前
马志宇完成签到,获得积分10
6秒前
6秒前
岑夜南完成签到,获得积分10
6秒前
doctor163完成签到,获得积分10
6秒前
mar发布了新的文献求助50
7秒前
阿烨完成签到,获得积分10
7秒前
搜集达人应助凯特采纳,获得10
8秒前
8秒前
朱朱发布了新的文献求助10
8秒前
阿钰完成签到,获得积分10
8秒前
8秒前
乐乐应助dudu采纳,获得10
8秒前
wang666完成签到,获得积分10
8秒前
加减乘除发布了新的文献求助10
9秒前
桐桐应助丁峰采纳,获得10
10秒前
与月同行发布了新的文献求助50
10秒前
文静醉易完成签到,获得积分10
10秒前
DrLuffy发布了新的文献求助10
10秒前
所所应助胡1111采纳,获得10
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729962
求助须知:如何正确求助?哪些是违规求助? 3274817
关于积分的说明 9989012
捐赠科研通 2990256
什么是DOI,文献DOI怎么找? 1640957
邀请新用户注册赠送积分活动 779507
科研通“疑难数据库(出版商)”最低求助积分说明 748235