A learning-based evaluation for lane departure warning system considering driving characteristics

计算机科学 预警系统 车道偏离警告系统 聚类分析 人工智能 驾驶模拟器 人工神经网络 警报 假警报 模拟 实时计算 机器学习 工程类 电信 航空航天工程
作者
Xianjian Jin,Qikang Wang,Zeyuan Yan,Hang Yang,Jinxiang Wang,Guodong Yin
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:238 (5): 1201-1218 被引量:3
标识
DOI:10.1177/09544070221140973
摘要

Misunderstanding the driver behavior in the next short time is the primary reason of the false warning for the lane departure warning system. This paper proposes a learning-based evaluation to predict whether the driver notices the deviation of the vehicle and takes corrective actions. First, statistical Gaussian model and K-means clustering method are utilized to classify driving style of drivers and determine warning areas based on key driving parameters extracted in driving scenarios. Then, according to the vehicle trajectory in the warning area and the time of lane crossing (TLC) value of the two warning area boundaries, an advanced horizontal dual-area warning (HDAW) model that is trained by bi-direction long short-term memory (BiLSTM) originated from recurrent neural network (RNN) is applied to predict the lane departure and corrective behavior of driver. The personalized warning strategy is finally developed by considering driver characteristics, which allows the warning system to adapt to different driving styles of drivers. Natural driving data from 57 drivers in the experimental driving simulator are collected to train personalized prediction and verify proposed evaluation method. The recent directional sequence of piecewise lateral slopes (DSPLS) and traditional TLC are also researched and compared. Experimental results show that the proposed approach has as low as false alarm rate of 3.97% and can improve prediction accuracy approximately 41.39% over DSPLS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代大神完成签到,获得积分10
刚刚
Apr9810h完成签到 ,获得积分10
1秒前
1秒前
DJ完成签到,获得积分10
1秒前
Owen应助打小老虎采纳,获得10
1秒前
早日毕业完成签到 ,获得积分10
2秒前
诚心小海豚完成签到,获得积分10
3秒前
jake完成签到,获得积分10
4秒前
晴天发布了新的文献求助10
5秒前
潇洒的白昼完成签到,获得积分10
6秒前
jjj发布了新的文献求助1000
7秒前
ccob完成签到,获得积分10
7秒前
8秒前
avocadoQ完成签到 ,获得积分10
8秒前
8秒前
隐形曼青应助Lengbo采纳,获得10
9秒前
鹿梨完成签到 ,获得积分10
9秒前
10秒前
踏实凝云完成签到,获得积分10
10秒前
10秒前
高文强完成签到,获得积分10
11秒前
11秒前
打小老虎完成签到,获得积分10
12秒前
楚之杰者完成签到,获得积分10
13秒前
过过发布了新的文献求助10
13秒前
哈哈完成签到 ,获得积分10
14秒前
端庄白秋发布了新的文献求助10
14秒前
兴奋的定帮应助乔巴采纳,获得10
14秒前
CDH完成签到,获得积分10
14秒前
偶然847完成签到,获得积分10
14秒前
打小老虎发布了新的文献求助10
14秒前
16秒前
好困发布了新的文献求助10
16秒前
锦秋完成签到 ,获得积分10
16秒前
爱吃饼干的土拨鼠完成签到,获得积分10
17秒前
pillow完成签到,获得积分10
17秒前
舒先生完成签到,获得积分10
19秒前
ni完成签到,获得积分10
19秒前
二巨头完成签到,获得积分10
20秒前
笑点低歌曲完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093764
捐赠科研通 3229662
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869467
科研通“疑难数据库(出版商)”最低求助积分说明 801470