A learning-based evaluation for lane departure warning system considering driving characteristics

计算机科学 预警系统 车道偏离警告系统 聚类分析 人工智能 驾驶模拟器 人工神经网络 警报 假警报 模拟 实时计算 机器学习 工程类 电信 航空航天工程
作者
Xianjian Jin,Qikang Wang,Zeyuan Yan,Hang Yang,Jinxiang Wang,Guodong Yin
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:238 (5): 1201-1218 被引量:3
标识
DOI:10.1177/09544070221140973
摘要

Misunderstanding the driver behavior in the next short time is the primary reason of the false warning for the lane departure warning system. This paper proposes a learning-based evaluation to predict whether the driver notices the deviation of the vehicle and takes corrective actions. First, statistical Gaussian model and K-means clustering method are utilized to classify driving style of drivers and determine warning areas based on key driving parameters extracted in driving scenarios. Then, according to the vehicle trajectory in the warning area and the time of lane crossing (TLC) value of the two warning area boundaries, an advanced horizontal dual-area warning (HDAW) model that is trained by bi-direction long short-term memory (BiLSTM) originated from recurrent neural network (RNN) is applied to predict the lane departure and corrective behavior of driver. The personalized warning strategy is finally developed by considering driver characteristics, which allows the warning system to adapt to different driving styles of drivers. Natural driving data from 57 drivers in the experimental driving simulator are collected to train personalized prediction and verify proposed evaluation method. The recent directional sequence of piecewise lateral slopes (DSPLS) and traditional TLC are also researched and compared. Experimental results show that the proposed approach has as low as false alarm rate of 3.97% and can improve prediction accuracy approximately 41.39% over DSPLS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉斐尔的北极健身房完成签到,获得积分10
刚刚
涨涨涨张完成签到 ,获得积分10
1秒前
小彭友完成签到,获得积分10
2秒前
2秒前
nil发布了新的文献求助10
2秒前
2秒前
4秒前
SciGPT应助多情的元容采纳,获得10
4秒前
5秒前
Emper发布了新的文献求助10
5秒前
7秒前
旋风乐发布了新的文献求助10
7秒前
Solomon完成签到 ,获得积分0
9秒前
mumu发布了新的文献求助10
9秒前
司空博涛完成签到,获得积分10
11秒前
12秒前
wangnankai发布了新的文献求助10
13秒前
SAXA完成签到,获得积分10
14秒前
柯飞扬完成签到,获得积分10
15秒前
李健的小迷弟应助小伙子采纳,获得10
17秒前
18秒前
mumu完成签到,获得积分10
19秒前
19秒前
Horizon完成签到,获得积分10
20秒前
NexusExplorer应助re采纳,获得10
20秒前
21秒前
于冬雪完成签到 ,获得积分10
21秒前
lck完成签到,获得积分10
22秒前
踏实的雁玉完成签到,获得积分10
26秒前
28秒前
29秒前
完美世界应助咖啡续命采纳,获得10
30秒前
小伙子发布了新的文献求助10
32秒前
32秒前
复杂的路人完成签到 ,获得积分10
33秒前
34秒前
bboyyujie完成签到,获得积分10
34秒前
re发布了新的文献求助10
35秒前
soumei发布了新的文献求助10
38秒前
呀呀呀完成签到 ,获得积分10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129