A learning-based evaluation for lane departure warning system considering driving characteristics

计算机科学 预警系统 车道偏离警告系统 聚类分析 人工智能 驾驶模拟器 人工神经网络 警报 假警报 模拟 实时计算 机器学习 工程类 电信 航空航天工程
作者
Xianjian Jin,Qikang Wang,Zeyuan Yan,Hang Yang,Jinxiang Wang,Guodong Yin
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:238 (5): 1201-1218 被引量:3
标识
DOI:10.1177/09544070221140973
摘要

Misunderstanding the driver behavior in the next short time is the primary reason of the false warning for the lane departure warning system. This paper proposes a learning-based evaluation to predict whether the driver notices the deviation of the vehicle and takes corrective actions. First, statistical Gaussian model and K-means clustering method are utilized to classify driving style of drivers and determine warning areas based on key driving parameters extracted in driving scenarios. Then, according to the vehicle trajectory in the warning area and the time of lane crossing (TLC) value of the two warning area boundaries, an advanced horizontal dual-area warning (HDAW) model that is trained by bi-direction long short-term memory (BiLSTM) originated from recurrent neural network (RNN) is applied to predict the lane departure and corrective behavior of driver. The personalized warning strategy is finally developed by considering driver characteristics, which allows the warning system to adapt to different driving styles of drivers. Natural driving data from 57 drivers in the experimental driving simulator are collected to train personalized prediction and verify proposed evaluation method. The recent directional sequence of piecewise lateral slopes (DSPLS) and traditional TLC are also researched and compared. Experimental results show that the proposed approach has as low as false alarm rate of 3.97% and can improve prediction accuracy approximately 41.39% over DSPLS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YR完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
hsiuf完成签到,获得积分10
8秒前
Zhao完成签到 ,获得积分10
8秒前
12秒前
Lrcx完成签到 ,获得积分10
18秒前
18秒前
一株多肉完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
21秒前
zhang完成签到 ,获得积分10
22秒前
浮游应助明理问柳采纳,获得10
27秒前
27秒前
28秒前
峰成完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
30秒前
chenyan完成签到,获得积分0
35秒前
库库发布了新的文献求助10
35秒前
ableyy完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
Skywalk满天星完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
46秒前
研学弟完成签到,获得积分10
47秒前
大团长完成签到,获得积分10
50秒前
Lilian完成签到,获得积分10
52秒前
申燕婷完成签到 ,获得积分10
54秒前
易止完成签到 ,获得积分10
57秒前
baoxiaozhai完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
雨前知了完成签到,获得积分10
1分钟前
我要读博士完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612966
求助须知:如何正确求助?哪些是违规求助? 4017956
关于积分的说明 12436915
捐赠科研通 3700270
什么是DOI,文献DOI怎么找? 2040657
邀请新用户注册赠送积分活动 1073414
科研通“疑难数据库(出版商)”最低求助积分说明 957049