亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The effect of CuZn+ZnCu defect complex on Cu2ZnSnS4 thin film solar cell: A density functional theory study

捷克先令 密度泛函理论 材料科学 太阳能电池 混合功能 纳米技术 光电子学 化学 计算化学
作者
Eka Cahya Prima,Jessie Manopo,Endi Suhendi,Andhy Setiawan,Ganes Shukri,Mohammad Kemal Agusta,Brian Yuliarto
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:296: 127192-127192 被引量:9
标识
DOI:10.1016/j.matchemphys.2022.127192
摘要

Due to its non-toxic and earth-abundant constituent elements, Cu2ZnSnS4 (CZTS) is a promising material for thin-film solar cells. To date, it is believed that the best-performing CZTS solar cells were fabricated with Cu/(Zn + Sn) = 0.8, Zn/Sn = 1.2 ratios, and efficiency was over 12.6%. Besides, defect also plays an essential role in solar cells' performance. It is known that the most abundant defect complex in this condition is CuZn + ZnCu. This paper shows the first investigation of CuZn + ZnCu defect complex towards CZTS solar cells performance using density functional theory (DFT). The work was carried out using Vienna ab-initio Simulation Package (VASP). First, GGA exchange-correlation functional was applied to perform the first structural relaxation. Then, for better electronic properties, the hybrid functional was used to analyze the density of states calculations with the screening parameter of 0.2 (HSE-06 exchange-correlation functional). The optical properties were also conducted through the HSE-06 exchange-correlation functional. Then, the predicted J-V characteristics were estimated using Spectroscopic Limited Maximum Efficiency (SLME). The result shows that this defect increased the predicted short-circuit current density from 36.593 to 39.392 mA/cm2. As a result, the optimum solar cell efficiency considering SQ Limit achieves 29.68%. Furthermore, this study shows that the defect induced a lower charge carrier effective mass. Therefore, it can be concluded that this defect is one of the reasons for the optimum ratios of Cu/(Sn + Zn) and Zn/Sn being 0.8 and 1.2, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrhughas完成签到,获得积分10
11秒前
田様应助张尧摇摇摇采纳,获得10
36秒前
44秒前
49秒前
Koala04完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
闪明火龙果完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
今后应助rebeycca采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
AliEmbark完成签到,获得积分10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
抹不掉的记忆完成签到,获得积分10
5分钟前
Swear完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457