The effect of CuZn+ZnCu defect complex on Cu2ZnSnS4 thin film solar cell: A density functional theory study

捷克先令 密度泛函理论 材料科学 太阳能电池 混合功能 纳米技术 光电子学 化学 计算化学
作者
Eka Cahya Prima,Jessie Manopo,Endi Suhendi,Andhy Setiawan,Ganes Shukri,Mohammad Kemal Agusta,Brian Yuliarto
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:296: 127192-127192 被引量:3
标识
DOI:10.1016/j.matchemphys.2022.127192
摘要

Due to its non-toxic and earth-abundant constituent elements, Cu2ZnSnS4 (CZTS) is a promising material for thin-film solar cells. To date, it is believed that the best-performing CZTS solar cells were fabricated with Cu/(Zn + Sn) = 0.8, Zn/Sn = 1.2 ratios, and efficiency was over 12.6%. Besides, defect also plays an essential role in solar cells' performance. It is known that the most abundant defect complex in this condition is CuZn + ZnCu. This paper shows the first investigation of CuZn + ZnCu defect complex towards CZTS solar cells performance using density functional theory (DFT). The work was carried out using Vienna ab-initio Simulation Package (VASP). First, GGA exchange-correlation functional was applied to perform the first structural relaxation. Then, for better electronic properties, the hybrid functional was used to analyze the density of states calculations with the screening parameter of 0.2 (HSE-06 exchange-correlation functional). The optical properties were also conducted through the HSE-06 exchange-correlation functional. Then, the predicted J-V characteristics were estimated using Spectroscopic Limited Maximum Efficiency (SLME). The result shows that this defect increased the predicted short-circuit current density from 36.593 to 39.392 mA/cm2. As a result, the optimum solar cell efficiency considering SQ Limit achieves 29.68%. Furthermore, this study shows that the defect induced a lower charge carrier effective mass. Therefore, it can be concluded that this defect is one of the reasons for the optimum ratios of Cu/(Sn + Zn) and Zn/Sn being 0.8 and 1.2, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程昌盛完成签到,获得积分10
刚刚
Aprilapple发布了新的文献求助10
刚刚
1秒前
华仔应助一十六采纳,获得10
1秒前
1秒前
完美世界应助王彦林采纳,获得10
1秒前
去玩儿完成签到,获得积分20
2秒前
2秒前
王宽宽宽发布了新的文献求助10
2秒前
lwq发布了新的文献求助10
2秒前
Grace完成签到,获得积分10
3秒前
华仔应助YaHaa采纳,获得10
4秒前
滕可燕发布了新的文献求助10
4秒前
爆米花应助陈甜甜采纳,获得10
5秒前
摆烂小鱼鱼完成签到 ,获得积分10
5秒前
Lucas应助韩麒嘉采纳,获得10
5秒前
5秒前
5秒前
6秒前
Niuniu完成签到,获得积分10
6秒前
裴裴驳回了珏晴应助
6秒前
7秒前
7秒前
7秒前
7秒前
Aprilapple完成签到,获得积分10
7秒前
8秒前
song发布了新的文献求助10
8秒前
兴奋的发卡完成签到 ,获得积分10
9秒前
自觉翠安应助qiuxiali123采纳,获得10
9秒前
11秒前
hezhuyou完成签到,获得积分20
11秒前
飞乐扣完成签到 ,获得积分10
11秒前
buno应助屈昭阳采纳,获得10
11秒前
优美的觅珍完成签到,获得积分20
11秒前
冯佳祥发布了新的文献求助10
11秒前
aa发布了新的文献求助10
11秒前
852应助一只肥牛采纳,获得10
12秒前
lewis17发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836