Gradient Matching Federated Domain Adaptation for Brain Image Classification

计算机科学 匹配(统计) 领域(数学分析) 人工智能 图像(数学) 适应(眼睛) 域适应 深度学习 模式识别(心理学) 机器学习 数学 分类器(UML) 统计 光学 物理 数学分析
作者
Ling‐Li Zeng,Zhipeng Fan,Jianpo Su,Min Gan,Limin Peng,Hui Shen,Dewen Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:16
标识
DOI:10.1109/tnnls.2022.3223144
摘要

Federated learning has shown its unique advantages in many different tasks, including brain image analysis. It provides a new way to train deep learning models while protecting the privacy of medical image data from multiple sites. However, previous studies suggest that domain shift across different sites may influence the performance of federated models. As a solution, we propose a gradient matching federated domain adaptation (GM-FedDA) method for brain image classification, aiming to reduce domain discrepancy with the assistance of a public image dataset and train robust local federated models for target sites. It mainly includes two stages: 1) pretraining stage; we propose a one-common-source adversarial domain adaptation (OCS-ADA) strategy, i.e., adopting ADA with gradient matching loss to pretrain encoders for reducing domain shift at each target site (private data) with the assistance of a common source domain (public data) and 2) fine-tuning stage; we develop a gradient matching federated (GM-Fed) fine-tuning method for updating local federated models pretrained with the OCS-ADA strategy, i.e., pushing the optimization direction of a local federated model toward its specific local minimum by minimizing gradient matching loss between sites. Using fully connected networks as local models, we validate our method with the diagnostic classification tasks of schizophrenia and major depressive disorder based on multisite resting-state functional MRI (fMRI), respectively. Results show that the proposed GM-FedDA method outperforms other commonly used methods, suggesting the potential of our method in brain imaging analysis and other fields, which need to utilize multisite data while preserving data privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈博文发布了新的文献求助10
2秒前
4秒前
5秒前
8秒前
研友_GZ3EbL发布了新的文献求助10
8秒前
yyawkx完成签到,获得积分10
9秒前
lin完成签到,获得积分10
9秒前
Saluzi发布了新的文献求助10
9秒前
邓佳鑫Alan应助想飞的猪采纳,获得10
10秒前
11秒前
11秒前
zhuangzhu发布了新的文献求助10
12秒前
yo一天完成签到 ,获得积分10
13秒前
zitian关注了科研通微信公众号
15秒前
超级蘑菇完成签到,获得积分10
17秒前
huoguo完成签到,获得积分10
17秒前
Saluzi完成签到,获得积分20
17秒前
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
21秒前
21秒前
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
林狗发布了新的文献求助10
22秒前
23秒前
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517